Salt desert,saline-alkaline dust storm and saline-alkaline mixed dust storm are significant but ignored problems for a long time.After many years of observations and researches,the author believes that salt desert,sal...Salt desert,saline-alkaline dust storm and saline-alkaline mixed dust storm are significant but ignored problems for a long time.After many years of observations and researches,the author believes that salt desert,saline-alkaline dust展开更多
The two-phase detonation of suspended mixed cyclotrimethylenetrinitramine (i.e., RDX) and aluminum dust in air is simulated with a two-phase flow model. The parameters of the mixed RDX-AI dust detonation wave are ob...The two-phase detonation of suspended mixed cyclotrimethylenetrinitramine (i.e., RDX) and aluminum dust in air is simulated with a two-phase flow model. The parameters of the mixed RDX-AI dust detonation wave are obtained. The double-front detonation and steady state of detonation wave of the mixed dust are analyzed. For the dust mixed RDX with density of 0.565kg/m3 and radius of 10μm as well as aluminum with density of 0.145kg/m3 and radius of 4μm, the detonation wave will reach a steady state at 23m. The effects of the size of aluminum on the detonation are analyzed. For constant radius of RDX particles with radius of 10μm, as the radius of aluminum particles is larger than 2.0 μm, the double-front detonation can be observed due to the different ignition distances and reaction rates of RDX and aluminum particles. As the radius of aluminum particles is larger, the velocity, pressure and temperature of detonation wave will be slower. The pressure at the Chapman-Jouguet (CJ) point also becomes lower. Comparing the detonation with single RDX dust, the pressure and temperature in the flow field of detonation of mixed dust are higher.展开更多
A simple method for estimating the contributions of mineral dust to PM2.5, PM10, or TSP is presented. The method is based on the assumption of external mixing of two types of particles with different PM2.5/PM10 ratios...A simple method for estimating the contributions of mineral dust to PM2.5, PM10, or TSP is presented. The method is based on the assumption of external mixing of two types of particles with different PM2.5/PM10 ratios, The method was applied to local and transported dust events observed in Tsukuba, Japan, and was compared with collocated polarization lidar measurements. The method was then applied to three dust events that occurred in Oki, Rishiri, and Ochiishi,Japan, in 2012. The results showed that the method was useful for detecting mineral dust and for qualitatively describing the mixing of dust with anthropogenic aerosols.展开更多
文摘Salt desert,saline-alkaline dust storm and saline-alkaline mixed dust storm are significant but ignored problems for a long time.After many years of observations and researches,the author believes that salt desert,saline-alkaline dust
文摘The two-phase detonation of suspended mixed cyclotrimethylenetrinitramine (i.e., RDX) and aluminum dust in air is simulated with a two-phase flow model. The parameters of the mixed RDX-AI dust detonation wave are obtained. The double-front detonation and steady state of detonation wave of the mixed dust are analyzed. For the dust mixed RDX with density of 0.565kg/m3 and radius of 10μm as well as aluminum with density of 0.145kg/m3 and radius of 4μm, the detonation wave will reach a steady state at 23m. The effects of the size of aluminum on the detonation are analyzed. For constant radius of RDX particles with radius of 10μm, as the radius of aluminum particles is larger than 2.0 μm, the double-front detonation can be observed due to the different ignition distances and reaction rates of RDX and aluminum particles. As the radius of aluminum particles is larger, the velocity, pressure and temperature of detonation wave will be slower. The pressure at the Chapman-Jouguet (CJ) point also becomes lower. Comparing the detonation with single RDX dust, the pressure and temperature in the flow field of detonation of mixed dust are higher.
文摘A simple method for estimating the contributions of mineral dust to PM2.5, PM10, or TSP is presented. The method is based on the assumption of external mixing of two types of particles with different PM2.5/PM10 ratios, The method was applied to local and transported dust events observed in Tsukuba, Japan, and was compared with collocated polarization lidar measurements. The method was then applied to three dust events that occurred in Oki, Rishiri, and Ochiishi,Japan, in 2012. The results showed that the method was useful for detecting mineral dust and for qualitatively describing the mixing of dust with anthropogenic aerosols.