The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least sq...The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of its solution are derived. Through this method, the combination among the mixed finite element spaces does not demand the discrete Babuska-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.展开更多
A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution...A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution are first discussed, and then a posteriori error estimator based on the NGME method is derived.展开更多
A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to th...A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).展开更多
This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established with...This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.展开更多
A nonlinear Galerkin mixed element (NGME) method for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of the NGME solution are derived.
Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R...Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.展开更多
This paper discusses convergence and complexity of arbitrary,but fixed,order adaptive mixed element methods for the Poisson equation in two and three dimensions.The two main ingredients in the analysis,namely the quas...This paper discusses convergence and complexity of arbitrary,but fixed,order adaptive mixed element methods for the Poisson equation in two and three dimensions.The two main ingredients in the analysis,namely the quasi-orthogonality and the discrete reliability,are achieved by use of a discrete Helmholtz decomposition and a discrete inf-sup condition.The adaptive algorithms are shown to be contractive for the sum of the error of flux in L2-norm and the scaled error estimator after each step of mesh refinement and to be quasi-optimal with respect to the number of elements of underlying partitions.The methods do not require a separate treatment for the data oscillation.展开更多
Two simplifled and stabilized mixed element formats for the Stokes problem are derived by bubble function, and their convergence, i.e., error analysis, are proved. These formats can save more freedom degrees than othe...Two simplifled and stabilized mixed element formats for the Stokes problem are derived by bubble function, and their convergence, i.e., error analysis, are proved. These formats can save more freedom degrees than other usual formats.展开更多
The non_stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non_stationary natural convection problem, by the spatial variations discreted...The non_stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non_stationary natural convection problem, by the spatial variations discreted with finite element method and time with finite difference scheme was derived, where the numerical solution of velocity, pressure, and temperature can be found together, and a numerical example to simulate the close square cavity is given, which is of practical importance.展开更多
In this paper we consider the nonoverlapping domain decomposition method based on mixed element approximation for elliptic problems in two dimentional space. We give a kind of discrete domain decomposition iterative a...In this paper we consider the nonoverlapping domain decomposition method based on mixed element approximation for elliptic problems in two dimentional space. We give a kind of discrete domain decomposition iterative algorithm using mixed finite element, the subdomain problems of which can be implemented parallelly. We also give the existence, uniqueness and convergence of the approximate solution.展开更多
An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coup...An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coupling finite element program that is developed based onthe concept of mixed interpolation of displacement/pressure. This program has been incorporated intoa damage mechanics model as well as the corresponding damage criterion. To illustrate theperformance of the proposed approach, a typical strain localization problem has been simulated. Theresults show that the proposed approach is of good capability to capture strain localization andpredict the damage evolution.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
A splitting positive definite mixed finite element method is proposed for second-order viscoelasticity wave equation. The proposed procedure can be split into three independent symmetric positive definite integro-diff...A splitting positive definite mixed finite element method is proposed for second-order viscoelasticity wave equation. The proposed procedure can be split into three independent symmetric positive definite integro-differential sub-system and does not need to solve a coupled system of equations. Error estimates are derived for both semidiscrete and fully discrete schemes. The existence and uniqueness for semidiscrete scheme are proved. Finally, a numerical example is provided to illustrate the efficiency of the method.展开更多
Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estima...Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estimates standard mixed finite spaces. Moreover, these two schemes provide the with first-order and second-order accuracy in time increment, respectively.展开更多
The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE s...The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.展开更多
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order...A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.展开更多
A numerical method based on the explicit two-step method in time direction and the mixed finite element method in spatial direction is presented for the symmetric regularized long wave(SRLW)equation.The optimal a prio...A numerical method based on the explicit two-step method in time direction and the mixed finite element method in spatial direction is presented for the symmetric regularized long wave(SRLW)equation.The optimal a priori error estimates(O((∆t)^(2)+h^(m+1)+h^(k+1)))for fully discrete explicit two-step mixed scheme are derived.Moreover,a numerical example is provided to confirm our theoretical results.展开更多
On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualiza...On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualization, is the coupling operator surjectivity, property that expresses in a general operator sense the Ladysenskaja-Babulka-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug- mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.展开更多
Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.
基金Project supported by the National Natural Science Foundation of China (Nos.10471100 and 40437017)the Science and Technology Foundation of Beijing Jiaotong University
文摘The Galerkin-Petrov least squares method is combined with the mixed finite element method to deal with the stationary, incompressible magnetohydrodynamics system of equations with viscosity. A Galerkin-Petrov least squares mixed finite element format for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of its solution are derived. Through this method, the combination among the mixed finite element spaces does not demand the discrete Babuska-Brezzi stability conditions so that the mixed finite element spaces could be chosen arbitrartily and the error estimates with optimal order could be obtained.
文摘A nonlinear Galerkin mixed element (NGME) method and a posteriori error exstimator based on the method are established for the stationary Navier-Stokes equations. The existence and error estimates of the NGME solution are first discussed, and then a posteriori error estimator based on the NGME method is derived.
文摘A nonlinear Galerkin/Petrov-least squares mixed element (NGPLSME) method for the stationary Navier-Stokes equations is presented and analyzed. The scheme is that Petrov-least squares forms of residuals are added to the nonlinear Galerkin mixed element method so that it is stable for any combination of discrete velocity and pressure spaces without requiring the Babu*lka-Brezzi stability condition. The existence, uniqueness and convergence (at optimal rate) of the NGPLSME solution is proved in the case of sufficient viscosity (or small data).
文摘This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.
基金Project supported by the National Natural Science Foundation of China (Nos.10471100 and 40437017)
文摘A nonlinear Galerkin mixed element (NGME) method for the stationary incompressible magnetohydrodynamics equations is presented. And the existence and error estimates of the NGME solution are derived.
基金supported by the National Natural Science Foundation of China (Grant 11502286)
文摘Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171219,11161130004)E-Institutes of Shanghai Municipal Education Commission(Grant No. E03004)+1 种基金supported by Shanghai Leading Discipline Project(Grant No. N.S30405)Shanghai Normal University Research Program (Grant No. SK201202)
文摘This paper discusses convergence and complexity of arbitrary,but fixed,order adaptive mixed element methods for the Poisson equation in two and three dimensions.The two main ingredients in the analysis,namely the quasi-orthogonality and the discrete reliability,are achieved by use of a discrete Helmholtz decomposition and a discrete inf-sup condition.The adaptive algorithms are shown to be contractive for the sum of the error of flux in L2-norm and the scaled error estimator after each step of mesh refinement and to be quasi-optimal with respect to the number of elements of underlying partitions.The methods do not require a separate treatment for the data oscillation.
文摘Two simplifled and stabilized mixed element formats for the Stokes problem are derived by bubble function, and their convergence, i.e., error analysis, are proved. These formats can save more freedom degrees than other usual formats.
文摘The non_stationary natural convection problem is studied. A lowest order finite difference scheme based on mixed finite element method for non_stationary natural convection problem, by the spatial variations discreted with finite element method and time with finite difference scheme was derived, where the numerical solution of velocity, pressure, and temperature can be found together, and a numerical example to simulate the close square cavity is given, which is of practical importance.
文摘In this paper we consider the nonoverlapping domain decomposition method based on mixed element approximation for elliptic problems in two dimentional space. We give a kind of discrete domain decomposition iterative algorithm using mixed finite element, the subdomain problems of which can be implemented parallelly. We also give the existence, uniqueness and convergence of the approximate solution.
基金The work was financially supported by a research grant from University of Science and Technology Beijing (No.20020611590).
文摘An investigation of computer simulation is presented to analyze the effectsof strain localization and damage evolution in large plastic deformation. The simulation is carriedout by using an elastic-plastic-damage coupling finite element program that is developed based onthe concept of mixed interpolation of displacement/pressure. This program has been incorporated intoa damage mechanics model as well as the corresponding damage criterion. To illustrate theperformance of the proposed approach, a typical strain localization problem has been simulated. Theresults show that the proposed approach is of good capability to capture strain localization andpredict the damage evolution.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
基金This work was supported in part by the National Natural Science Foundation of China (Grant No, 11061021), the Program of Higher-level Talents of Inner Mongolia University (No. Z200901004), and the Scientific Research Projection of Higher Schools of Inner Mongolia (Nos. N J10006, N J10016, NJZZ12011).
文摘A splitting positive definite mixed finite element method is proposed for second-order viscoelasticity wave equation. The proposed procedure can be split into three independent symmetric positive definite integro-differential sub-system and does not need to solve a coupled system of equations. Error estimates are derived for both semidiscrete and fully discrete schemes. The existence and uniqueness for semidiscrete scheme are proved. Finally, a numerical example is provided to illustrate the efficiency of the method.
基金Supported by by the National Science Foundation for Young Scholars of China(11101431)the Fundamental Research Funds for the Central Universities (12CX04082A,10CX04041A)Shandong Province Natural Science Foundation of China(ZR2010AL020)
文摘Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estimates standard mixed finite spaces. Moreover, these two schemes provide the with first-order and second-order accuracy in time increment, respectively.
文摘The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.
基金supported by the National Natural Science Foundation of China (No. 10601022)NSF ofInner Mongolia Autonomous Region of China (No. 200607010106)513 and Science Fund of InnerMongolia University for Distinguished Young Scholars (No. ND0702)
文摘A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.
基金supported by the National Natural Science Fund of China(11061021,11301258 and 11361035)the Scientific Research Projection of Higher Schools of Inner Mongolia(NJZZ12011 and NJZY13199)+1 种基金the Natural Science Fund of Inner Mongolia Province(2012MS0106 and 2012MS0108)the Program of Higher-level talents of Inner Mongolia University(125119).
文摘A numerical method based on the explicit two-step method in time direction and the mixed finite element method in spatial direction is presented for the symmetric regularized long wave(SRLW)equation.The optimal a priori error estimates(O((∆t)^(2)+h^(m+1)+h^(k+1)))for fully discrete explicit two-step mixed scheme are derived.Moreover,a numerical example is provided to confirm our theoretical results.
文摘On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualization, is the coupling operator surjectivity, property that expresses in a general operator sense the Ladysenskaja-Babulka-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug- mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.
基金Supported by National Natural Science Foundation of China(11371331)Supported by the Natural Science Foundation of Education Department of Henan Province(14B110018)
文摘Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.