The reliability assessment for an automobile crankshaft provides an important understanding in dealing with the design life of the component in order to eliminate or reduce the likelihood of failure and safety risks.T...The reliability assessment for an automobile crankshaft provides an important understanding in dealing with the design life of the component in order to eliminate or reduce the likelihood of failure and safety risks.The failures of the crankshafts are considered as a catastrophic failure that leads towards a severe failure of the engine block and its other connecting subcomponents.The reliability of an automotive crankshaft under mixed mode loading using the Markov Chain Model is studied.The Markov Chain is modelled by using a two-state condition to represent the bending and torsion loads that would occur on the crankshaft.The automotive crankshaft represents a good case study of a component under mixed mode loading due to the rotating bending and torsion stresses.An estimation of the Weibull shape parameter is used to obtain the probability density function,cumulative distribution function,hazard and reliability rate functions,the bathtub curve and the mean time to failure.The various properties of the shape parameter is used to model the failure characteristic through the bathtub curve is shown.Likewise,an understanding of the patterns posed by the hazard rate onto the component can be used to improve the design and increase the life cycle based on the reliability and dependability of the component.The proposed reliability assessment provides an accurate,efficient,fast and cost effective reliability analysis in contrast to costly and lengthy experimental techniques.展开更多
The present work aims to investigate the fatigue behavior of Direct Laser Deposition(DLD) Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy under constant amplitude stress. 22 pieces of DLD Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy...The present work aims to investigate the fatigue behavior of Direct Laser Deposition(DLD) Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy under constant amplitude stress. 22 pieces of DLD Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy standard cylinder specimens were tested under a stress level of 800 MPa with a stress ratio of 0.06. Fatigue fractography and fatigue life data were obtained.Through the fracture surface analysis, the specimens were divided into two categories in accordance with the location of crack initiation and defect types. Comparison of fatigue life and behavior between two specimen types was given, which was followed by a discussion about the impact of defect type, size and position on the fatigue life of the specimen. The fatigue test results also show a large variation of fatigue life. To illustrate the statistical characteristics of the fatigue life, probabilistic analysis was performed, and a novel bimodal lognormal model was established. The model has a good fit with the experimental data and can reduce the scatter of the fatigue life significantly.展开更多
基金Supported by the Ministry of Education Malaysia(HLP Program,Grant No.HLP-KPT.B.600-2/3-781226085655)
文摘The reliability assessment for an automobile crankshaft provides an important understanding in dealing with the design life of the component in order to eliminate or reduce the likelihood of failure and safety risks.The failures of the crankshafts are considered as a catastrophic failure that leads towards a severe failure of the engine block and its other connecting subcomponents.The reliability of an automotive crankshaft under mixed mode loading using the Markov Chain Model is studied.The Markov Chain is modelled by using a two-state condition to represent the bending and torsion loads that would occur on the crankshaft.The automotive crankshaft represents a good case study of a component under mixed mode loading due to the rotating bending and torsion stresses.An estimation of the Weibull shape parameter is used to obtain the probability density function,cumulative distribution function,hazard and reliability rate functions,the bathtub curve and the mean time to failure.The various properties of the shape parameter is used to model the failure characteristic through the bathtub curve is shown.Likewise,an understanding of the patterns posed by the hazard rate onto the component can be used to improve the design and increase the life cycle based on the reliability and dependability of the component.The proposed reliability assessment provides an accurate,efficient,fast and cost effective reliability analysis in contrast to costly and lengthy experimental techniques.
基金the support from the National Key Research and Development Program of China (No. 2017YFB1104003)the National Natural Science Foundation of China (No. 11772027)Aeronautical Science Foundation of China (No. 28163701002)
文摘The present work aims to investigate the fatigue behavior of Direct Laser Deposition(DLD) Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy under constant amplitude stress. 22 pieces of DLD Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy standard cylinder specimens were tested under a stress level of 800 MPa with a stress ratio of 0.06. Fatigue fractography and fatigue life data were obtained.Through the fracture surface analysis, the specimens were divided into two categories in accordance with the location of crack initiation and defect types. Comparison of fatigue life and behavior between two specimen types was given, which was followed by a discussion about the impact of defect type, size and position on the fatigue life of the specimen. The fatigue test results also show a large variation of fatigue life. To illustrate the statistical characteristics of the fatigue life, probabilistic analysis was performed, and a novel bimodal lognormal model was established. The model has a good fit with the experimental data and can reduce the scatter of the fatigue life significantly.