期刊文献+
共找到4,921篇文章
< 1 2 247 >
每页显示 20 50 100
Analysis of a Composite Admixture Based on Ready-Mixed Concrete Waste Residuals
1
作者 Jinfa Jiang Long Xiong +1 位作者 Ming Bao Zihan Zhou 《Fluid Dynamics & Materials Processing》 EI 2023年第8期1983-1995,共13页
Reasonable treatment and utilization of waste residuals discharged during the production of ready-mixed concrete is an important problem in the cement industry.In this study,a composite admixture was prepared by using... Reasonable treatment and utilization of waste residuals discharged during the production of ready-mixed concrete is an important problem in the cement industry.In this study,a composite admixture was prepared by using ready-mixed concrete waste residuals,furnace slag,and water granulated slag.The grinding characteristics of such material were investigated.Moreover,the effect of such admixture on cement hydration and pore structure was analyzed by X-ray diffraction,thermogravimetric-differential scanning calorimetry,scanning electron microcopy and mercury intrusion porosimetry.As shown by the results:The grinding characteristics of the waste residuals can be improved significantly by mixing them with furnace slag and water granulated slag.Furthermore,the composite admixture does not change the composition of hydration products;rather it contributes to refine the pore structure of the matrix,thus improving the mechanical properties of these cement-based materials. 展开更多
关键词 Waste residue of ready-mixed concrete station ready mixed concrete composite admixture ACTIVITY MICROSTRUCTURE
下载PDF
Fiber-reinforced Mechanism and Mechanical Performance of Composite Fibers Reinforced Concrete 被引量:4
2
作者 申俊敏 ZHANG Yancong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期121-130,共10页
To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evalua... To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evaluated by optical electron micrometer(OEM) and scanning electron microscope(SEM). Three kinds of fiber, such as polyacrylonitrile-based carbon fiber, basalt fiber, and glass fiber, were used in the composite fibers reinforced cement concrete. The composite fibers could form a stable structure in concrete after the liquid-phase coupling treatment, gas-liquid double-effect treatment, and inert atmosphere drying. The mechanical properties of composite fibers reinforced concrete(CFRC) were studied by universal test machine(UTM). Moreover, the effect of composite fibers on concrete was analyzed based on the toughness index and residual strength index. The results demonstrated that the composite fibers could improve the mechanical properties of concrete, while the excessive amount of composite fibers had an adverse effect on the mechanical properties of concrete. The composite fibers could significantly improve the toughness index of CFRC, and the increment rate is more than 30%. The composite fibers could form a mesh structure, which could promote the stability of concrete and guarantee the excellent mechanical properties. 展开更多
关键词 CEMENT concrete composite fibers mechanical performance fiber-reinforced mechanism
下载PDF
Peridynamic Modeling and Simulation of Fracture Process in Fiber-Reinforced Concrete 被引量:5
3
作者 Zhuang Chen Xihua Chu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期241-272,共32页
In this study,a peridynamic fiber-reinforced concrete model is developed based on the bond-based peridynamic model with rotation effect(BBPDR).The fibers are modelled by a semi-discrete method and distributed with ran... In this study,a peridynamic fiber-reinforced concrete model is developed based on the bond-based peridynamic model with rotation effect(BBPDR).The fibers are modelled by a semi-discrete method and distributed with random locations and angles in the concrete specimen,since the fiber content is low,and its scale is smaller than the concrete matrix.The interactions between fibers and concrete matrix are investigated by the improvement of the bond’s strength and stiffness.Also,the frictional effect between the fibers and the concrete matrix is considered,which is divided into static friction and slip friction.To validate the proposed model,several examples are simulated,including the tensile test and the three-point bending beam test.And the numerical results of the proposed model are compared with the experiments and other numerical models.The comparisons show that the proposed model is capable of simulating the fracture behavior of the fiber-reinforced concrete.After adding the fibers,the tensile strength,bending strength,and toughness of the fiber-reinforced concrete specimens are improved.Besides,the fibers distribution has an impact on the crack path,especially in the three-point bending beam test. 展开更多
关键词 PERIDYNAMICS fiber-reinforced concrete fracture mechanics numerical simulation three-point bending beam
下载PDF
Anti-cracking Property of EVA-modified Polypropylene Fiber-reinforced Concrete Under Thermal-cooling Cycling Curing 被引量:2
4
作者 LIU Sifeng YANG Siyu +2 位作者 KONG Yaning WAN Tingting ZHAO Guorong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第5期1109-1118,共10页
In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive ... In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further. 展开更多
关键词 anti-cracking property EVA-modified POLYPROPYLENE fiber-reinforced concrete thermal-cooling CYCLING CURING
下载PDF
Compressive Strength Estimation for the Fiber-Reinforced Polymer (FRP)-Confined Concrete Columns with Different Shapes Using Artificial Neural Networks 被引量:3
5
作者 曹玉贵 李小青 胡隽 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期395-400,共6页
An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural ... An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural networks( ANNs) model to predict the ultimate strength of FRP confined column with different shapes was proposed. The models had seven inputs including the column length,the tensile strength of the FRP in the hoop direction,the total thickness of FRP,the diameter of the concrete specimen,the elastic modulus of FRP,the corner radius and the concrete compressive strength. The compressive strength of the confined concrete was the output data. The results reveal that the proposed models have good prediction and generalization capacity with acceptable errors. 展开更多
关键词 compressive strength concrete column artificial neural networks(ANN) fiber-reinforced polymer(FRP)
下载PDF
Effect of Recycled Mixed Powder on the Mechanical Properties and Microstructure of Concrete
6
作者 Chao Liu Huawei Liu Jian Wu 《Journal of Renewable Materials》 SCIE EI 2022年第5期1397-1414,共18页
In this paper,recycled bricks and recycled concrete were applied to prepare eco-friendly recycled mixed powder(RMP)cementitious material,as a supplementary to replace conventional cement for improve the recycling of c... In this paper,recycled bricks and recycled concrete were applied to prepare eco-friendly recycled mixed powder(RMP)cementitious material,as a supplementary to replace conventional cement for improve the recycling of construction and demolition waste.Based on the effect of cementitious materials on the hydration of silicate cement,the effects of RMP on the workability,mechanical properties and microstructure of recycled mixed powder concrete(RMPC)with the different replacement ratios and the 8:4 and 6:4 mixing ratio of recycled brick powder(RBP)and recycled concrete powder(RCP)were investigated.The results showed that the fluidity of the mix decreased with increasing of the replacement ratio and the mixing ratio of RBP and RCP,but the influence of the fluidity was smaller within 15%replacement ratio.As the replacement ratio increases,the internal pore structure of RMPC tends to be loose and porous,which exhibits a significant pore volume distribution characteristic.The number of large capillaries was considerably increased at replacement ratio of 45%.The 7 d compressive strength of RMPC was slightly lower than that of ordinary concrete.The compressive and splitting tensile strengths of RMPC at 28 d increased by 4.2%and 10.1%,respectively,with increasing curing age at 15%replacement ratio and 6:4 mixing ratio.The RMPC mechanical strengths with RBP and RCP at the mixing ratio of 6:4 was higher than those of 8:2.Finally,a basis for the recycling of RBP and RCP in the construction industry can be provided by the results of this study. 展开更多
关键词 Recycled concrete recycled mixed powder pore structure mechanical properties
下载PDF
The Continuum Analytical Method of Steel Frame- Reinforced Concrete Shear Wall Mixed Structure
7
作者 Jian Liu Xiangyun Huang +2 位作者 Guangen Zhou Jiping Hao Zenglin Xing 《Journal of Civil Engineering and Architecture》 2011年第4期368-374,共7页
The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considerin... The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considering on the influence of semirigidity between steel beams and steel columns, second order effect of beam-column members for steel frame and structural second order effect, the traditional continuum analytial method used in RC shear-frames wall structure is developed to steel frames-reinforced concrete shear wall mixed structure subject to horizontal load in this paper. A continuum approach, which is suitable for analyzing steel frames-reinforced concrete shear wall mixed structure subject to horizontal load, is presented. The method is relatively simple and more practical. It will be referred to structural design for steel frames-reinforced concrete shear wall mixed structure. 展开更多
关键词 Steel frames-reinforced concrete wall mixed structure continuum analytial approach inter-story drift stiffness semirigid connection second order effect.
下载PDF
High Performance Concrete and Its Typical Mixes 被引量:3
8
作者 Cai Yuebo , Kwan Kwokhung , Cheung Yaukai Chan Honchuen Senior Engineer, Material and Structure Department, Nanjing Hydraulic Research Institute, Nanjing 210024 P. H. Doctor, Department of Civil and Structural Engineering, University of Hong Kong Professor, Department of Civil and Structural Engineering, University of Hong Kong 《China Ocean Engineering》 SCIE EI 1995年第3期335-344,共10页
With the modern development of chemical and mineral admixtures, it is now possible to produce much higher performance concrete than before. Higher performance does not only mean higher strength, but also better durabi... With the modern development of chemical and mineral admixtures, it is now possible to produce much higher performance concrete than before. Higher performance does not only mean higher strength, but also better durability, lower risk of thermal cracking and higher dimensional stability etc. The three most effective admixtures for producing high performance concrete are superplastieizer, pulverized fuel ash and condensed silica fume. This paper outlines the properties of these materials and presents some practical guidelines for their usage. 展开更多
关键词 high performance concrete SUPERPLASTICIZER pulverized fuel ash condensed silica fume typical mixes
下载PDF
A Simple Mix Proportion Design Method Based on Frost Durability for Recycled High Performance Concrete Using Fully Coarse Recycled Aggregate 被引量:3
9
作者 王新杰 LIU Wenying +2 位作者 WEI Da 朱平华 胡坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1119-1124,共6页
Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix propo... Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use. 展开更多
关键词 recycled high performance concrete mix proportion design frost durability compressive strength water absorption
下载PDF
Process-Functional Model of Transportation Mix Concrete
10
作者 Andrey Vladimirovich Ostroukh Bashmakov Igor Aleksandrovich Polgun Mikhail Borisovich 《Journal of Transportation Technologies》 2014年第2期157-163,共7页
The paper proposes a process-functional model of transportation mix concrete, which is a structured description of a means of transportation technology mix concrete road at the level of the production process. Range o... The paper proposes a process-functional model of transportation mix concrete, which is a structured description of a means of transportation technology mix concrete road at the level of the production process. Range of activities related to the transportation of concrete mixtures is presented in the form of hierarchically nested processes that are coordinated on the basis of general systems theory. The model is described in a strict sequence: process chain→process step→process link, and all built technological chains consist of indivisible units. 展开更多
关键词 Road TRANSPORT PROCESS Chain The TRANSPORT PROCESS TRANSPORTATION of concrete mixes
下载PDF
Durability of Performance Foamed Concrete Mix Design with Silica Fume for Housing Development 被引量:1
11
作者 Fahrizal Zulkamain Mahyuddin Ramli 《材料科学与工程(中英文版)》 2011年第5期518-527,共10页
关键词 混凝土配合比设计 泡沫性能 普通硅酸盐水泥 硅粉 混凝土抗压强度 耐久性 泡沫混凝土 房屋
下载PDF
Local Aggregate in Production of Concrete Mix in Jordan
12
作者 Mohmd Sarireh Hamadallah Al-Baijat 《Open Journal of Civil Engineering》 2019年第2期81-94,共14页
Concrete properties such as unit weight and compressive strength are highly dependable on the properties of aggregate. Current research aims to study the effect of aggregate properties on concrete considering the reso... Concrete properties such as unit weight and compressive strength are highly dependable on the properties of aggregate. Current research aims to study the effect of aggregate properties on concrete considering the resource of aggregate. The properties of aggregate and fine sand were studied (specific gravity, density, absorption, and abrasion). Also, the properties of concrete were studied (density, unit weight, and compressive strength). Samples of coarse and medium aggregates, and fine sand were collected from different areas in Jordan (Ajloun, Amman, Aqaba, Irbid, Jerash, Karak, Ma’an, Madaba, Salt, Zarqa, and Tafila) to be tested and used in concrete mix. Aggregate from South of Jordan has higher values in specific gravity and bulk density (Aqaba, Ma’an, and Karak aggregates). Also, the same aggregate samples have lower values in absorption and abrasion (Ma’an, Aqaba, Karak, and Tafila). For the properties of concrete that include density, unit weight, and compressive strength, all samples have achieved the design properties and strength in the current study. For density and unit weight, samples from South of Jordan have higher values (Ma’an and Aqaba). And for compressive strength, Ma’an, Irbid and Amman concrete samples have the highest values at 7-day, while the 28-day compressive strength comes highest for Zarqa, Ma’an, Irbid and Amman. From the results of the current study, the compressive strength at 7-day and 28-day is related to the density of coarse and medium aggregate, abrasion, and absorption. The higher the density, the higher the compressive strength. And the lower abrasion and absorption, the higher the compressive strength of concrete. Current research will be useful in selecting the source of aggregate to produce a considerable concrete strength. 展开更多
关键词 AGGREGATE concrete mix PRODUCTION COMPRESSIVE Strength concrete Age
下载PDF
Equal Volumes of Sand and Gravel Concrete Mix Ratios in Cameroon and Its Effect on Concrete Compressive Strength
13
作者 Patrick Bame Che Yamb Bell Emmanuel Ndigui Billong 《World Journal of Engineering and Technology》 2022年第3期539-549,共11页
In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of thi... In recent years, the rationalization of concrete mix ratios which batches equal volumes of sand and gravel in building projects has been gaining grounds in the Cameroon construction industry. The main objective of this study is therefore to investigate if the concrete produced with rationalized mix ratio can be adopted as conventional mix ratio in terms of minimum required compression strength of concrete for buildings. Specifically this work compared the conventional mix ratio of 350 kg of cement: 400 liters of sand: 800 liters of gravel for a cubic meter and the rationalized batch of 350 kg of cement: 600 liters of sand: 600 liters of 5/15 gravel, 15/25 gravel and a combination of 5/15 + 15/25 gravel. Average compressive tests’results for both the conventional and the rationalized mix ratios were found to meet the minimum compressive strength of 65% at 7 days, 90% at 14 days and 99% at 28 days for gravel size combination 5/15 + 15/25. Single size gravel of 5/15 and 15/25 did not meet the minimum required compressive strength of 20 N/mm<sup>2</sup> for the rationalized mix ratio at 28 days curing based on the minimum compressive strength required, this study arrives at the conclusion that the equal volumes of sand and gravel mix ratio of 350 kg/m<sup>3</sup> of cement: 600 liters of sand: 600 liters of gravel mix ratio can be adopted as a conventional concrete mix ratio for gravel size 5/15 + 15/25. 展开更多
关键词 Conventional concrete Rationalized concrete mix Ratio Compressive Strength Equal Volumes of Sand and Gravel
下载PDF
Concrete Mix Design by IS,ACI and BS Methods:A Comparative Analysis
14
作者 Ashish Chhachhia 《Journal of Building Material Science》 2020年第1期30-33,共4页
Concrete is one of the most consumable construction materials on the earth.The concrete constitutes cement,sand,gravel,water and/or additives in definite proportions.The proportions of raw materials of concrete are de... Concrete is one of the most consumable construction materials on the earth.The concrete constitutes cement,sand,gravel,water and/or additives in definite proportions.The proportions of raw materials of concrete are decided by the concrete mix design.The mix design depends on the various factors.For mix design,most of the countries have their own specifications.In the present study,standard guidelines of India,Britain and America for the concrete mix design have been discussed.The concrete grades of M25,M35 and M45 were designed and compared.Indian Standards were also compared.It was concluded that a new revised version of Indian Standard code has the lowest value of water/cement ratio and highest quantity of cement as compared to other standards. 展开更多
关键词 concrete mix design Indian standards ACI code BS code
下载PDF
Preparation and Optimization of Mix ratio for C50T Girder Manufactured Sand and Concrete
15
作者 Honghong Ye Delin Zeng +4 位作者 Yong Yang Xingbo Fan Wei Wang Pingbo Zao Zhusheng Yang 《Frontiers Research of Architecture and Engineering》 2021年第2期16-20,共5页
Considering actual construction conditions of Binchuan-Heqing Highway,this paper provides the C50 mix ratio conforming to engineering requirements by strictly controlling the quality of raw materials,optimizing the de... Considering actual construction conditions of Binchuan-Heqing Highway,this paper provides the C50 mix ratio conforming to engineering requirements by strictly controlling the quality of raw materials,optimizing the design of mix ratio scientifically,preparing superior C50 concrete 0 with manufactured sand,and optimizing the concrete mix ratio based on the adjustment of fly ash replacement,water-cement ratio,polycarboxylate-type water reducer mixing amount,sand ratio,etc.The result indicates that,the water-cement ratio has a great influence on the concrete strength,and if the ratio of coal ash is high in the binding material,the early compressive strength of the concrete will increase slowly. 展开更多
关键词 concrete mix ratio STRENGTH Water-cement ratio
下载PDF
Comparative Analysis of PM10 Emission Rates from Controlled and Uncontrolled Cement Silos in Concrete Batching Facilities
16
作者 Ahmed El-Said Rady Mokhtar S. Beheary +1 位作者 Mossad El-Metwally Ashraf A. Zahran 《Open Journal of Air Pollution》 2023年第2期67-77,共11页
This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guide... This research study quantifies the PM<sub>10</sub> emission rates (g/s) from cement silos in 25 concrete batching facilities for both controlled and uncontrolled scenarios by applying the USEPA AP-42 guidelines step-by-step approach. The study focuses on evaluating the potential environmental impact of cement dust fugitive emissions from 176 cement silos located in 25 concrete batching facilities in the M35 Mussafah industrial area of Abu Dhabi, UAE. Emission factors are crucial for quantifying the PM<sub>10</sub> emission rates (g/s) that support developing source-specific emission estimates for areawide inventories to identify major sources of pollution that provide screening sources for compliance monitoring and air dispersion modeling. This requires data to be collected involves information on production, raw material usage, energy consumption, and process-related details, this was obtained using various methods, including field visits, surveys, and interviews with facility representatives to calculate emission rates accurately. Statistical analysis was conducted on cement consumption and emission rates for controlled and uncontrolled sources of the targeted facilities. The data shows that the average cement consumption among the facilities is approximately 88,160 (MT/yr), with a wide range of variation depending on the facility size and production rate. The emission rates from controlled sources have an average of 4.752E<sup>-04</sup> (g/s), while the rates from uncontrolled sources average 0.6716 (g/s). The analysis shows a significant statistical relationship (p < 0.05) and perfect positive correlation (r = 1) between cement consumption and emission rates, indicating that as cement consumption increases, emission rates tend to increase as well. Furthermore, comparing the emission rates from controlled and uncontrolled scenarios. The data showed a significant difference between the two scenarios, highlighting the effectiveness of control measures in reducing PM<sub>10</sub> emissions. The study’s findings provide insights into the impact of cement silo emissions on air quality and the importance of implementing control measures in concrete batching facilities. The comparative analysis contributes to understanding emission sources and supports the development of pollution control strategies in the Ready-Mix industry. 展开更多
关键词 Emission Factors concrete Batching Cement Dust PM10 Fugitive Emissions SILOS Environmental Impact Air Quality Ready-mix Industrial Facilities
下载PDF
Effect of Flaky Plastic Particle Size and Volume Used as Partial Replacement of Gravel on Compressive Strength and Density of Concrete Mix
17
作者 Stanley O. Osubor Kamoru A. Salam Taiwo M. Audu 《Journal of Environmental Protection》 2019年第6期711-721,共11页
Common ways of disposing waste plastic such as incineration and landfilling have negative impacts on the environment. Partial replacement of natural aggregate in concrete with waste plastic including polyethylene tere... Common ways of disposing waste plastic such as incineration and landfilling have negative impacts on the environment. Partial replacement of natural aggregate in concrete with waste plastic including polyethylene terephthalate (PET) is more environmental friendly and sustainable. The effect of adding 5% to 20% waste plastic by volume of natural coarse aggregate (“gravel”) and plastic particle size (3 to 7 mm) on the density and compressive strength of plastic-concrete mix after 28 days of curing was studied. The results showed that density of the concrete decreased from 2406.7 to 2286.7 kg/m3 as waste plastic increased from 5% to 20% v/v compared with 2443.3 kg/m3 recorded by concrete without waste plastic. Change in particle size from 3 to 7 mm has no significant effect on the density of the plastic-concrete mix. The compressive strength decreased as the volume and particle size of waste plastic increased. When waste plastic volume changed from 5% to 20% v/v, the compressive strength decreased from 20.5 to 15 MPa, 18.6 to 14.3 MPa and 17.2 to 13.8 MPa for 3, 5 and 7 mm waste plastic particle size respectively while the concrete without plastic has 21.33 MPa. Therefore, the addition of 5% (v/v gravel) of flaky waste plastic in the concrete produces a lightweight concrete which could offer economic benefit without substantially reducing the compressive strength of the plastic-concrete mix. 展开更多
关键词 Flaky PLASTIC COMPRESSIVE Strength DENSITY GRAVEL Particle Size Plastic-concrete mix
下载PDF
Seismic strengthening of reinforced concrete columns damaged by rebar corrosion using combined CFRP and steel jacket 被引量:2
18
作者 李金波 贡金鑫 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期506-512,共7页
In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve... In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed. 展开更多
关键词 reinforced concrete column seismic performance CORROSION retrofitting steel jacket fiber-reinforced polymer (FRP) DUCTILITY
下载PDF
The Properties of Sulfur Rubber Concrete (SRC) 被引量:1
19
作者 李悦 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第1期129-133,共5页
The mix designs and specimen preparation for the dry process and wet process of sulfur rubber conerete ( SRC ) were investigated. The compressive strength, corrosion-resistance and toughness were studied and discuss... The mix designs and specimen preparation for the dry process and wet process of sulfur rubber conerete ( SRC ) were investigated. The compressive strength, corrosion-resistance and toughness were studied and discussed. The results show that SRC is corrosion-resistanet. Although the compressive strength of SRC decreases with inereasing rubber content, the toughness increases instead . Adding micro-filler will improve the compressive strength of SRC . There is a threshold value for the sulfur content, at which the compressive strength and the workability of SRC reach an optimum balance . The bond between rubber particles and surrounding sulfur is strong due to the vulcanization process that generates cross-link through S-C bonds. 展开更多
关键词 sulfur rubber concrete mix design dry process wet process
下载PDF
Experimental study on bond behavior between BFRP bars and seawater sea-sand concrete 被引量:2
20
作者 SU Xun YIN Shi-ping +1 位作者 ZHAO Ying-de HUA Yun-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期2193-2205,共13页
Combining fiber reinforced polymer(FRP)with seawater sea-sand concrete(SSC)can solve the shortage of river sand that will be used for marine engineering construction.The bond performance of BFRP bars and SSC specimens... Combining fiber reinforced polymer(FRP)with seawater sea-sand concrete(SSC)can solve the shortage of river sand that will be used for marine engineering construction.The bond performance of BFRP bars and SSC specimens is researched by pull-out test in this paper.The effects of the parameters,such as bar type,bar diameter,concrete type and stirrup restraint,are considered.It is beneficial to the bonding performance by the reduction of bar diameter.The utilization of seawater sea-sand has a low influence on the bond properties of concrete.The bond strength of BFRP is slightly lower than the steel rebar,but the difference is relatively small.The failure mode of the specimen can be changed and the interfacial bond stress can be improved by stirrups restraint.The bond-slip curves of BFRP ribbed rebar include micro slip stage,slip stage,descent stage and residual stage.The bond stress shows the cycle attenuation pattern of sine in the residual stage.In addition,the bond-slip model of BFRP and SSC is obtained according to the experimental results and related literature,while the predicted curve is also consistent well with the measured curve. 展开更多
关键词 basalt fiber-reinforced polymer(BFRP) seawater sea-sand concrete(SSC) bond-slip curve constitutive model
下载PDF
上一页 1 2 247 下一页 到第
使用帮助 返回顶部