期刊文献+
共找到1,468篇文章
< 1 2 74 >
每页显示 20 50 100
Theoretical Analysis and Experimental Verification on Flow Field of Piezoelectric Pump with Unsymmetrical Slopes Element 被引量:18
1
作者 XIA Qixiao ZHANG Jianhui +1 位作者 LEI Hong CHENG Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期735-744,共10页
Regular valveless piezoelectric pumps have rectifying elements outside their chambers to produce net flow. These rectifying elements outside the chamber will increase the overall volume of the pump and prevent its min... Regular valveless piezoelectric pumps have rectifying elements outside their chambers to produce net flow. These rectifying elements outside the chamber will increase the overall volume of the pump and prevent its minimization. Valveless piezoelectric pump with unsymmetrical slopes elements(USE), proposed in this paper, differs from other valveless pumps in that it is easy to be minimized by developing the chamber bottom as such a rectifying element. In this research, the working principle of the proposed pump was analyzed first. Numerical models were thereby established and numerical simulation was conducted to the chamber flow field with the method of time-dependent velocity. The effects of the USEs on the flow field in the chamber were shown clearly in simulation. And the particular feature of flow field in the chamber was discovered. It behaves a complex flow field, in which strong turbulent occurs companying a lot of vortexes in different directions and different sizes. This feature is just opposite to what regular piezoelectric pumps expect: a moderate flow field. The turbulent flow could be used to have different liquids stirred and well mixed in the chamber to produce homogeneous solution, emulsion or turbid liquid. Meanwhile, numerical simulation also presents the effect of the angles difference of the two slopes upon the flow field, and upon the flow rate of the pump, which fits to the theoretical analysis. Experiments with the proposed pump were also conducted to verify the numerical results. In these experiments, six USEs with different slope angles were used for efficiency tests, which proved the validity and reliability of the numerical analysis. The data obtained from numerical analysis agree well with that from the experiments. The errors ranged from 4.4% to 14.8% with their weighted average error being 9.7%. 展开更多
关键词 PIEZOELECTRIC Valveless pump flow field Unsymmetrical slopes element
下载PDF
Particle Image Velocimetry Measurement of the Flow Field in the Play of the Drilling Pump Valve 被引量:7
2
作者 YANG Guoan YIN Xin +1 位作者 SONG Zheng HUANG Cong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期27-37,共11页
The failure of a drilling pump is always due to the break of the drilling pump valve, which is one of the most important but also the weakest parts of the drilling pump. Over the decades, the degradation of drilling p... The failure of a drilling pump is always due to the break of the drilling pump valve, which is one of the most important but also the weakest parts of the drilling pump. Over the decades, the degradation of drilling pump valves has been investigated extensively and various failure mechanisms have been proposed. However, no experimental test on the fluid has been successfully performed to support some of these mechanisms. In this paper, tests of the flow within the valve play are carried out to investigate the factors resulting in the failure of the valve. In the tests, particle image velocimetry(PIV) technology is employed to measure the flow field distribution of the valve play in the model. From these tests, the distributions of velocity and vorticity of fluid in 'various valves with different valve angles and different valve lifts are obtained, from which the features of flow fields are derived and generalized. Subsequently, a general rule of the influence of valve angles and valve lifts on the flow velocity is concluded according to chart analyses of maximal velocities and mean velocities. Finally, an analysis is made on the possibility of valve failure caused by erosion and abrasion in a working valve, with the application of the failure mechanisms of drilling pump valves. PIV measurement improves the study on the failure of the drilling pump valve, and the results show good agreement with previous computational fluid dynamics(CFD) simulations. 展开更多
关键词 drilling pump valve flow field particle image velocimetry(PIV) valve failure
下载PDF
3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller 被引量:5
3
作者 LIU Houlin WANG Kai +3 位作者 YUAN Shouqi TAN Minggao WANG Yong RU Weimin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期491-497,共7页
The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at ... The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps. 展开更多
关键词 double blade pump IMPELLER inner flow 3D particle image velocimetry(PIV) test
下载PDF
Application of the Modified nverse Design Method in the Optimization of the Runner Blade of a Mixed-Flow Pump 被引量:7
4
作者 Ye-Ming Lu Xiao-Fang Wang +1 位作者 Wei Wang Fang-Ming Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期137-153,共17页
To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplification... To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplifications, a sail?like constrained area is proposed, which can be used to configure di erent runner blade shapes. Then, the new method is applied to redesign and optimize the runner blade of the scale core component of the 1400?MW canned nuclear coolant pump in an established multi?optimization system compromising the Computational Fluid Dynamics(CFD) analysis, the Response Surface Methodology(RSM) and the Non?dominated Sorting Genetic Algorithm?II(NSGA?II). After the execution of the optimization procedure, three optimal samples were ultimately obtained. Then, through comparative analysis using the target runner blade, it was found that the maximum e ciency improvement reached 1.6%, while the head improvement was about 10%. Overall, a promising runner blade inverse design method which will benefit the hydraulic design of the mixed?flow pump has been proposed. 展开更多
关键词 OPTIMIZATION mixed?flow pump Inverse design method Runner blade Nuclear coolant
下载PDF
Effects of Meridional Flow Passage Shape on Hydraulic Performance of Mixed-flow Pump Impellers 被引量:19
5
作者 BING Hao CAO Shuliang +1 位作者 TAN Lei ZHU Baoshan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期469-475,共7页
During the process of designing the mixed-flow pump impeller, the meridional flow passage shape directly affects the obtained meridional flow field, which then has an influence on the three-dimensional impeller shape.... During the process of designing the mixed-flow pump impeller, the meridional flow passage shape directly affects the obtained meridional flow field, which then has an influence on the three-dimensional impeller shape. However, the meridional flow passage shape is too complicated to be described by a simple formula for now. Therefore, reasonable parameter selection for the meridional flow passage is essential to the investigation. In order to explore the effects of the meridional flow passage shape on the impeller design and the hydraulic performance of the mixed-flow pump, the hub and shroud radius ratio (HSRR) of impeller and the outlet diffusion angle (ODA) of outlet zone are selected as the meridional flow passage parameters. 25 mixed-flow pump impellers, with specific speed of 496 under the design condition, are designed with various parameter combinations. Among these impellers, one with HSRR of 1.94 and ODA of 90° is selected to carry out the model test and the obtained experimental results are used to verify accuracies of the head and the hydraulic efficiency predicted by numerical simulation. Based on SIMPLE algorithm and standard k-ε two-equation turbulence model, the three-dimensional steady incompressible Reynolds averaged Navier-Stokes equations are solved and the effects of different parameters on hydraulic performance of mixed-flow pump impellers are analyzed. The analysis results demonstrate that there are optimal values of HSRR and ODA available, so the hydraulic performance and the internal flow of mixed-flow pumps can be improved by selecting appropriate values for the meridional flow passage parameters. The research on these two parameters, HSRR and ODA, has further illustrated influences of the meridional flow passage shape on the hydraulic performance of the mixed-flow pump, and is beneficial to improving the design of the mixed-flow pump impeller. 展开更多
关键词 mixed-flow pump meridional flow passage numerical simulation hydraulic performance
下载PDF
Investigation of the oil-seawater mixed flow under an electromagnetic field 被引量:2
6
作者 Aiwu Peng Lingzhi Zhao +5 位作者 Xiaoqiang Chen Qingfan Zhang Ciwen Sha Jianping Zhao Ran Li Zhaolian Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第7期14-21,共8页
The electromagnetic separation method is a new approach to treat ship-based marine oily wastewater,in which oil droplets are dispersed in seawater(oil-seawater mixed flow).In order to clarify the separation process an... The electromagnetic separation method is a new approach to treat ship-based marine oily wastewater,in which oil droplets are dispersed in seawater(oil-seawater mixed flow).In order to clarify the separation process and determine the separation characteristics,the flow field and volume fraction of the oil droplets of the oil-seawater mixed flow under an applied electromagnetic field with different operating conditions were investigated by 2D numerical simulations with the Eulerian model.The results show that:(1)the downward Lorentz force causes seawater to flow downwards and the oil droplets to move upwards due to the electromagnetic separation force in the effective section of the separation channel;(2)the volume fraction of the oil droplets at the top of the outlet section increases with the current density,magnetic field,and the diameter of the oil droplet and decreases with the inlet velocity of the oily seawater.The results provide useful guidance for the design of electromagnetic separation devices of the oil-seawater mixed flow. 展开更多
关键词 oil-seawater mixed flow ELECTROMAGNETIC field oil-seawater separation MARINE OIL POLLUTION
下载PDF
Experimental Study of the Influence of Flow Passage Subtle Variation on Mixed-flow Pump Performance 被引量:5
7
作者 BING Hao CAO Shuliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期615-621,共7页
In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the m... In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump. 展开更多
关键词 mixed-flow pumps flow passage hydraulic performance pressure fluctuation model test
下载PDF
Mathematical Modeling,Field Calibration and Numerical Simulation of Low-Speed Mixed Traffic Flow in Cities 被引量:1
8
作者 Doctoral Candidate: Feng SuweiAdvisor: Prof. Dai Shiqiang 《Advances in Manufacturing》 SCIE CAS 1998年第2期86-88,共3页
Withtherapiddevelopmentoftransportationandautomobileindustry,theconflictbetweenmotormanufactureandhighwaycon... Withtherapiddevelopmentoftransportationandautomobileindustry,theconflictbetweenmotormanufactureandhighwayconstructionbecomess... 展开更多
关键词 low speed mixed traffic flow in cities mathematical modeling numerical simulation field calibration vehicular parking traffic light control
下载PDF
Numerical and Experimental Investigation of High-efficiency Axial-flow Pump 被引量:50
9
作者 SHI Weidong ZHANGDesheng GUAN Xingfan LENG Hongfei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期38-44,共7页
The experimental investigation of axial-flow pump has been rapidly developed to meet the needs of South-to-North Water Diversion Project of China. Owing to the boundary conditions of hub, blade tip clearance, much of ... The experimental investigation of axial-flow pump has been rapidly developed to meet the needs of South-to-North Water Diversion Project of China. Owing to the boundary conditions of hub, blade tip clearance, much of the physical phenomena and laws involved in this complex flow field can't be fully determined. The flow characteristics of the high efficiency axial-flow pump have been simulated by RNG k-e turbulence model and SIMPLEC arithmetic based on FLUENT software. Numerical results indicate that the data from the prediction show agreement with the experimental results, static pressure on pressure side of blades increases slightly at circumferential direction with radius increasing, and keep almost constant at the same radial while increasing gradually from inlet to exit on the suction side along flow direction at design conditions. The static pressure, total pressure and velocity at inlet, impeller outlet and vane outlet were measured by a five-hole probe, and a contrastive experiment was done to investigate the influence of hub leakage. The experimental results show that inlet flow is almost axial and the prerotation is very small at various conditions. The meridional velocity and circulation distribution are almost identical at impeller outlet at design conditions due to steady flow and high efficiency. The residual circulation exits at downstream of the guide vane, and the circumferential velocity component increases linearly from hub to tip at small flow rate conditions. Hub leakage in adjustable blades results in the decrease of the meridional velocity and circulation at blade exit near hub. The results of numerical simulation and experiments supply important flow structure information for the high-efficiency axial-flow pump. 展开更多
关键词 axial-flow pump flow field multi-conditions high efficiency PROBE hub leakage
下载PDF
Effects of Airflow Field on Droplets Diameter inside the Corrugated Packing of a Rotating Packed Bed 被引量:4
10
作者 Xu Chengcheng Jiao Weizhou +3 位作者 Liu Youzhi Guo Liang Yuan Zhiguo Zhang Qiaoling 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第4期38-46,共9页
Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly throug... Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly through experiments is difficult because of the compact structure and complex multiphase flow pattern in RPB. To study the mixing characteristic, Fluent, the computational fluid dynamics(CFD) software, was used to explore the effect of airflow field on droplet diameter. For conducting calculations, the gas-liquid two-phase flow inside the packing was simulated with the RNG k-ε turbulence model and the Lagrange Discrete Phase Model(DPM), respectively. The numerical calculation results showed that coalescence and breakup of droplets can take place in the gas phase flow inside the packing and can be strengthened with increased rotating speed, thereby leading to the enlargement of the average diameter. 展开更多
关键词 ROTATING packed BED computational fluid dynamics GAS-LIQUID flow field diameter MIXING
下载PDF
CFD Prediction of Mean Flow Field and Impeller Capacity for Pitched Blade Turbine 被引量:2
11
作者 乔胜超 王日杰 +1 位作者 杨晓霞 闫越飞 《Transactions of Tianjin University》 EI CAS 2015年第3期250-258,共9页
This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine... This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature. 展开更多
关键词 CFD simulation PBT stirred tank flow field pumping capacity
下载PDF
Convective heat and mass transfer in MHD mixed convection flow of Jeffrey nanofluid over a radially stretching surface with thermal radiation 被引量:6
12
作者 M.BILAL ASHRAF T.HAYAT +1 位作者 A.ALSAEDI S.A.SHEHZAD 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1114-1123,共10页
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi... Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed. 展开更多
关键词 Jeffrey nanofluid mixed convection flow radially stretching surface convective boundary conditions magnetic field
下载PDF
The Influences of the Nozzle Throat Length and the Orifice Grooving Degree on Internal Flow Field for a Multi-Entry Fan Nozzle Based on FLUENT 被引量:1
13
作者 Wei Deng Ruirui Zhang +3 位作者 Gang Xu Longlong Li Qin Tang Min Xu 《Engineering(科研)》 2019年第11期777-790,共14页
Spray nozzle is a key component in equipment for plant protection and water-saving irrigation. The fan nozzle is a kind of spray nozzle, which is widely used in agriculture and forestry for irrigation and control of d... Spray nozzle is a key component in equipment for plant protection and water-saving irrigation. The fan nozzle is a kind of spray nozzle, which is widely used in agriculture and forestry for irrigation and control of diseases, insects, and weeds. In consideration of the increasing velocity of the flow field, when the hydraulic pressure remains unchanged and the flow path becomes narrow, and because the increase of the velocity of spray drops can increase the penetrability of spray drops into the plant canopy, a kind of new fan nozzle with multi entries and simple inner structure was designed and the influences of its structure parameters on the inner flow field were analyzed using FLUENT software. The experimental results showed that the influence of the throat length on the inner flow field of the nozzle was insignificant, while the orifice grooving degree had a significant effect on inner flow field of the nozzle. The larger the grooving degree was, the smaller the pressure and velocity of internal flow field of the nozzle. The nozzle throat length had little influence on the velocity change of internal flow field. Positive correlation was shown between throat length and flow field velocity. 展开更多
关键词 FAN NOZZLE ORIFICE Spray FLUENT Multi-Entry inner flow field
下载PDF
Numerical simulation of transient flow performance during different periods in centrifugal pumpNumerical simulation of transient flow performance during different periods in centrifugal pump
14
作者 HUANG Si ZHANG Jie +1 位作者 ZHANG Xuejiao SU Xianghui 《排灌机械工程学报》 EI CSCD 北大核心 2016年第9期737-741,共5页
The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to ... The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized. 展开更多
关键词 centrifugal pump variable speed method starting and STOPPING PERIODS transient flow field numerical simulation
下载PDF
PERFORMANCE CHARACTERISTICS AND VISCOUS FLOW ANALYSIS OF CENTRIFUGAL PUMPS 被引量:1
15
作者 Yuan Shouqi Jin Shude(Jiangsu University of Science and Technology ) He Wei(Zhejiang University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第1期75-81,共17页
A non-overload centrifugal pump has been invented to solve the long-existingoverload problem of low specific speed centrifugal pumps when operating at greater flow andlower head than normal. The performance characteri... A non-overload centrifugal pump has been invented to solve the long-existingoverload problem of low specific speed centrifugal pumps when operating at greater flow andlower head than normal. The performance characteristics of non-overload centrifugal pumpsand the ordinary ones are introduced, and the test results are given here. By I. Khalil's numencalmethod, in hub-shroud plane using potential flow calculation to determine flow surface positionand in blade-blade plane using revised k turbulence model, the inner flow of non-overloadcentnfugal pumps and the ordinary ones are respectively calculated. The numerical simulationshows that the inner flow situates are completely different under the two cases. And there existsremarkable inner flow characteristics of non-overload centrifugal impellers but with neither flowseparation nor apparent wake flow, therefore, the lower efficiency attributes to the larger hydrau-lic friction loss due to larger blade wrapping angle. 展开更多
关键词 Centrifugal pump Non-overload inner flow Calculation
全文增补中
基于Flow Simulation的注聚泵保黏改造设计 被引量:2
16
作者 任永良 孙凯 +3 位作者 雷启盟 高胜 徐友江 刘壮壮 《化工机械》 CAS 2018年第3期387-390,共4页
针对注聚泵在工作中存在对聚合物溶液机械降解大、容积效率低等问题,对注聚泵液力端进行了改造。对影响保黏效果的吸入阀、排出阀及壳体内部流道等关键部位进行了结构改造,并利用Flow Simulation流体分析软件对改造前后的液体流线进行... 针对注聚泵在工作中存在对聚合物溶液机械降解大、容积效率低等问题,对注聚泵液力端进行了改造。对影响保黏效果的吸入阀、排出阀及壳体内部流道等关键部位进行了结构改造,并利用Flow Simulation流体分析软件对改造前后的液体流线进行了仿真分析。结果表明:改造后流体流动迹线接近层流状态,能够最大程度地降低黏损率。现场应用效果证明保黏改造效果较为明显。 展开更多
关键词 注聚泵 液力端 吸入阀 排出阀 壳体内部流道 机械降解 保黏改造 容积效率 flow
下载PDF
基于POLYFLOW的管道黏弹性流体流动数值模拟 被引量:2
17
作者 柳天磊 杜遥雪 《五邑大学学报(自然科学版)》 CAS 2010年第4期7-11,共5页
借助POLYFLOW软件分析了方型截面管道内黏弹性流体的流动参数,研究表明:管道内流体不仅存在着轴向流动,还存在着回流运动,即在流体流动方向存在着二次流动和流层颗粒分散混合现象.
关键词 黏弹性流体 浓度场 湍流 返混
下载PDF
CFD simulation of single-phase flow in flotation cells:Effect of impeller blade shape,clearance,and Reynolds number 被引量:6
18
作者 Manjunath Basavarajappa Sanja Miskovic 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第5期657-669,共13页
A series of numerical simulations of turbulent single-phase flows are performed to understand the flow and mixing characteristics in a laboratory scale flotation tank.Four impeller blade shapes covering a wide range o... A series of numerical simulations of turbulent single-phase flows are performed to understand the flow and mixing characteristics in a laboratory scale flotation tank.Four impeller blade shapes covering a wide range of surface areas and lip lengths are considered to highlight and contrast the flow behavior predicted in the impeller stream.The mean flow close to the impeller is fully characterized by considering velocity components along the axial direction at different radial locations.Normalized results suggest the development of a comparatively stronger axial velocity component for a blade design with the smallest lip length,called big-tip impeller here.Normalized turbulent kinetic energy profiles close to the impeller reveal the existence of an asymmetric trailing vortex pair.The highest turbulence kinetic energy dissipation rates are observed close to the impeller blades and stator walls where the radial jet strikes the stator walls periodically.Furthermore,liquid phase mixing in the flotation cell is studied using transient scalar tracing simulations providing mixing time data.Finally,pumping capacity and efficiency of different impeller designs are calculated based on which the impeller blade design with a rectangular blade design is found to perform most efficiently. 展开更多
关键词 FLOTATION IMPELLER BLADE design TURBULENT flow Mixing pumpING efficiency
下载PDF
Numerical Simulation of Double Diffusive Mixed Convection in a Horizontal Annulus with Finned Inner Cylinder 被引量:3
19
作者 Cherfi Ryad Sadaoui Djamel +1 位作者 Sahi Adel Mouloud Smail 《Fluid Dynamics & Materials Processing》 EI 2019年第2期153-169,共17页
The present work relates to a numerical investigation of double diffusive mixed convection around a horizontal annulus with a finned inner cylinder.The solutal and thermal buoyancy forces are sustained by maintaining ... The present work relates to a numerical investigation of double diffusive mixed convection around a horizontal annulus with a finned inner cylinder.The solutal and thermal buoyancy forces are sustained by maintaining the inner and outer cylinders at uniform temperatures and concentrations.Buoyancy effects are also considered,with the Boussinesq approximation.The forced convection effect is induced by the outer cylinder rotating with an angular velocity(ω)in an anti-clockwise direction.The studies are made for various combinations of dimensionless numbers;buoyancy ratio number(N),Lewis number(Le),Richardson number(Ri)and Grashof number(Gr).The isotherms,isoconcentrations and streamlines as well as both average and local Nusselt and Sherwood numbers were studied.A finite volume scheme is adopted to solve the transport equations for continuity,momentum,energy and mass transfer.The results indicate that the use of fins on the inner cylinder with outer cylinder rotation,significantly improves the heat and mass transfer in the annulus. 展开更多
关键词 Finned inner CYLINDER double diffusive flow heat and mass TRANSFER ROTATING ANNULUS mixed CONVECTION numerical simulation
下载PDF
Flow zone distribution and mixing time in a Peirce-Smith copper converter 被引量:3
20
作者 Hongliang Zhao Jingqi Wang +1 位作者 Fengqin Liu Hong Yong Sohn 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期70-77,共8页
Peirce-Smith copper converting involves complex multiphase flow and mixing.In this work,the flow zone distribution and mixing time in a Peirce-Smith copper converter were investigated in a 1:5 scaled cold model.Flow f... Peirce-Smith copper converting involves complex multiphase flow and mixing.In this work,the flow zone distribution and mixing time in a Peirce-Smith copper converter were investigated in a 1:5 scaled cold model.Flow field distribution,including dead,splashing,and strong-loop zones,were measured,and a dimensionless equation was established to determine the correlation of the effects of stirring and mixing energy with an error of<5%.Four positions in the bath,namely,injection,splashing,strong-loop,and dead zones,were selected to add a hollow salt powder tracer and measure the mixing time.Injecting a quartz flux through tuyeres or into the backflow point of the splashing wave through a chute was recommended instead of adding it through a crane hopper from the top of the furnace to improve the slag-making reaction. 展开更多
关键词 Peirce-Smith converter copper smelting flow fields mixing time cold model experiments
下载PDF
上一页 1 2 74 下一页 到第
使用帮助 返回顶部