期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of tetrahedral particle mixing and motion in rotating drums 被引量:7
1
作者 Nan Gui Xingtuan Yang +1 位作者 Jiyuan Tu Shengyao Jiang 《Particuology》 SCIE EI CAS CSCD 2018年第4期1-11,共11页
A regular tetrahedron is the simplest three-dimensional structure and has the largest non-sphericity. Mixing of tetrahedral particles in a thin drum mixer was studied by the soft-sphere-imbedded pseudo- hard particle ... A regular tetrahedron is the simplest three-dimensional structure and has the largest non-sphericity. Mixing of tetrahedral particles in a thin drum mixer was studied by the soft-sphere-imbedded pseudo- hard particle model and compared with that of spherical particles. The two particle types were simulated with different rotation speeds and drum filling levels. The Lacey mixing index and Shannon information entropy were used to explore the effects of sphericity on the mixing and motion of particles. Moreover, the probability density functions and mean values and variances of motion velocities, including translational and rotational, were computed to quantify the differences between the motion features of tetrahedra and spheres. We found that the flow regime depended on the particle shape in addition to the rotation speed and filling level of the drum. The mixing of tetrahedral particles was better than that of spherical particles in the rolling and cascading regimes at a high filling level, whereas it may be poorer when the filling level was low. The Shannon information entropy is better than the Lacey mixing index to evaluate mixing because it can reflect the real change of flow regime from the cataracting to the centrifugal regime, whereas the mixing index cannot. 展开更多
关键词 Tetrahedron Non-spherical particle Mixing Drum flow regime Discrete element method
原文传递
Predicting minimum fluidization velocities of multi-component solid mixtures 被引量:3
2
作者 Mohammad Asif 《Particuology》 SCIE EI CAS CSCD 2013年第3期309-316,共8页
Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for ... Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono- component values for the velocity and the bed voidage at incipient fluidization. Based on flow regime and the mixing level of constituent species, it is found that these relationships differ significantly from each other, whether related to size-different or density-different mixtures. For mixed beds of size-different mixtures, the effect of volume contraction is accounted for by the mean voidage term, which is absent for segregated beds. Incorporating the volume-change of mixing leads to values of the mixture minimum fluidization velocities even lower than corresponding values for segregated bed, thus conforming to the trend reported in the literature. Size-different mixtures exhibit flow regime dependence irrespective of whether the bed is mixed or segregated. On the other hand, the mixing of constituent species does not affect the minimum fiuidization velocity of density-different mixtures, as the difference in the expres- sions for a segregated and a mixed system is rather inconsequential. Comparison with experimental data available in the literature is made to test the efficacy of the minimum fluidization velocity expressions derived here. 展开更多
关键词 Minimum fluidization velocity Multi-component solid mixtures flow regime Bed void fraction Volume-change of mixing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部