We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every bl...We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.展开更多
The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conducti...The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conduction. The first equation of an elliptic type is defined with respect to the electric potential, the successive two equations of convection dominated diffusion type are given to define the electron concentration and the hole concentration, and the fourth equation of heat conductor is for the temperature. The electric potential appears in the equations of electron concentration, hole concentration and the temperature in the formation of the intensity. A mass conservative numerical approximation of the electric potential is presented by using the mixed finite volume element, and the accuracy of computation of the electric intensity is improved one order. The method of characteristic fractional step difference is applied to discretize the other three equations, where the hyperbolic terms are approximated by a difference quotient in the characteristics and the diffusion terms are discretized by the method of fractional step difference. The computation of three-dimensional problem works efficiently by dividing it into three one-dimensional subproblems and every subproblem is solved by the method of speedup in parallel. Using a pair of different grids (coarse partition and refined partition), piecewise threefold quadratic interpolation, variation theory, multiplicative commutation rule of differential operators, mathematical induction and priori estimates theory and special technique of differential equations, we derive an optimal second order estimate in L2-norm. This numerical method is valuable in the simulation of semiconductor device theoretically and actually, and gives a powerful tool to solve the international problem presented by J. Douglas, Jr.展开更多
In this paper,we consider the recovery of block sparse signals,whose nonzero entries appear in blocks (or clusters)rather than spread arbitrarily throughout the signal,from incomplete linear measurements.A high order ...In this paper,we consider the recovery of block sparse signals,whose nonzero entries appear in blocks (or clusters)rather than spread arbitrarily throughout the signal,from incomplete linear measurements.A high order sufficient condition based on block RIP is obtained to guarantee the stable recovery of all block sparse signals in the presence of noise,and robust recovery when signals are not exactly block sparse via mixed l2/l1 minimization.Moreover,a concrete example is established to ensure the condition is sharp.The significance of the results presented in this paper lies in the fact that recovery may be possible under more general conditions by exploiting the block structure of the sparsity pattern instead of the conventional sparsity pattern.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos. 11171299 and 91130009)Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090091)
文摘We consider efficient methods for the recovery of block sparse signals from underdetermined system of linear equations. We show that if the measurement matrix satisfies the block RIP with δ2s 〈 0.4931, then every block s-sparse signal can be recovered through the proposed mixed l2/ll-minimization approach in the noiseless case and is stably recovered in the presence of noise and mismodeling error. This improves the result of Eldar and Mishali (in IEEE Trans. Inform. Theory 55: 5302-5316, 2009). We also give another sufficient condition on block RIP for such recovery method: 58 〈 0.307.
基金supported by the National Natural Science Foundation of China(Grant Nos.11101124 and 11271231)the National Tackling Key Problems Program for Science and Technology(Grant No.20050200069)the Doctorate Foundation of the Ministry of Education of China(Grant No.20030422047)
文摘The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conduction. The first equation of an elliptic type is defined with respect to the electric potential, the successive two equations of convection dominated diffusion type are given to define the electron concentration and the hole concentration, and the fourth equation of heat conductor is for the temperature. The electric potential appears in the equations of electron concentration, hole concentration and the temperature in the formation of the intensity. A mass conservative numerical approximation of the electric potential is presented by using the mixed finite volume element, and the accuracy of computation of the electric intensity is improved one order. The method of characteristic fractional step difference is applied to discretize the other three equations, where the hyperbolic terms are approximated by a difference quotient in the characteristics and the diffusion terms are discretized by the method of fractional step difference. The computation of three-dimensional problem works efficiently by dividing it into three one-dimensional subproblems and every subproblem is solved by the method of speedup in parallel. Using a pair of different grids (coarse partition and refined partition), piecewise threefold quadratic interpolation, variation theory, multiplicative commutation rule of differential operators, mathematical induction and priori estimates theory and special technique of differential equations, we derive an optimal second order estimate in L2-norm. This numerical method is valuable in the simulation of semiconductor device theoretically and actually, and gives a powerful tool to solve the international problem presented by J. Douglas, Jr.
文摘In this paper,we consider the recovery of block sparse signals,whose nonzero entries appear in blocks (or clusters)rather than spread arbitrarily throughout the signal,from incomplete linear measurements.A high order sufficient condition based on block RIP is obtained to guarantee the stable recovery of all block sparse signals in the presence of noise,and robust recovery when signals are not exactly block sparse via mixed l2/l1 minimization.Moreover,a concrete example is established to ensure the condition is sharp.The significance of the results presented in this paper lies in the fact that recovery may be possible under more general conditions by exploiting the block structure of the sparsity pattern instead of the conventional sparsity pattern.