期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Factors influencing the climatological mixed layer depth in the South China Sea:numerical simulations 被引量:1
1
作者 范聪慧 王娟娟 宋金宝 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2010年第5期1112-1118,共7页
The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD... The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD), and established a numerical simulation in the South China Sea (SCS) using the Regional Ocean Model System (ROMS) with a high-resolution (1/12~x 1/12~) grid nesting method and 50 vertical layers. Several ideal numerical experiments were tested by modifying the existing sea surface boundary conditions. Especially, we analyzed the sensitivity of the results simulated for the CMLD with factors of sea surface wind stress (SSWS), sea surface net heat flux (SSNHF), and the difference between evaporation and precipitation (DEP). The result shows that of the three factors that change the depth of the CMLD, SSWS is in the first place, when ignoring the impact of SSWS, CMLD will change by 26% on average, and its effect is always to deepen the CMLD; the next comes SSNHF (13%) for deepening the CMLD in October to January and shallowing the CMLD in February to September; and the DEP comes in the third (only 2%). Moreover, we analyzed the temporal and spatial characteristics of CMLD and compared the simulation result with the ARGO observational data. The results indicate that ROMS is applicable for studying CMLD in the SCS area. 展开更多
关键词 mixed layer depth (MLD) South China Sea (SCS) wind stress net heat flux EVAPORATION precipitation regional ocean model system (ROMS)
下载PDF
Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM 被引量:2
2
作者 Yutong ZHANG Haiming XU +1 位作者 Fangli QIAO Changming DONG 《Frontiers of Earth Science》 SCIE CAS CSCD 2018年第1期24-36,共13页
The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIO- ESM). The seasonal variation of the global MLD from the FIO-E... The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIO- ESM). The seasonal variation of the global MLD from the FIO-ESM simulation is compared to Argo observational data. The Argo data show that the global ocean MLD has a strong seasonal variation with a deep MLD in winter and a shallow MLD in summer, while the spring and fall seasons act as transitional periods. Overall, the FIO-ESM simula- tion accurately captures the seasonal variation in MLD in most areas. It exhibits a better performance during summer and fall than during winter and spring. The simulated MLD in the Southern Hemisphere is much closer to observations than that in the Northern Hemisphere. In general, the simulated MLD over the South Atlantic Ocean matches the observation best among the six areas. Additionally, the model slightly underestimates the MLD in parts of the North Atlantic Ocean, and slightly overestimates the MLD over the other ocean basins. 展开更多
关键词 mixed layer depth fio-esm model seasonalvariation
原文传递
Evaluation of Nonbreaking Wave-Induced Mixing Parameterization Schemes Based on a One-Dimensional Ocean Model
3
作者 TANG Ran HUANG Chuanjiang +1 位作者 DAI Dejun WANG Gang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期567-576,共10页
Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve... Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve the simulation of the upper ocean.Thus far,several nonbreaking wave-induced mixing parameterization schemes have been proposed;however,no quantitative comparison has been performed among them.In this paper,a one-dimensional ocean model was used to compare the performances of five schemes,including those of Qiao et al.(Q),Hu and Wang(HW),Huang and Qiao(HQ),Pleskachevsky et al.(P),and Ghantous and Babanin(GB).Similar to previous studies,all of these schemes can decrease the simulated sea surface temperature(SST),increase the subsurface temperature,and deepen the mixed layer,thereby alleviating the common thermal deviation problem of the ocean model for upper ocean simulation.Among these schemes,the HQ scheme exhibited the weakest wave-induced mixing effect,and the HW scheme exhibited the strongest effect;the other three schemes exhibited roughly the same effect.In particular,the Q and P schemes exhibited nearly the same effect.In the simulation based on observations from the Ocean Weather Station Papa,the HQ scheme exhibited the best performance,followed by the Q scheme.In the experiment with the HQ scheme,the root-mean-square deviation of the simulated SST from the observations was 0.43℃,and the mixed layer depth(MLD)was 2.0 m.As a contrast,the deviations of the SST and MLD reached 1.25℃ and 8.4 m,respectively,in the experiment without wave-induced mixing. 展开更多
关键词 wave-induced mixing surface waves sea surface temperature mixed layer depth General Ocean Turbulence model
下载PDF
Mixed layer in the Sea of Japan:numerical simulation andlong-term data analysis 被引量:1
4
作者 TRUSENKOVA Olga KHRAPCHENKOV Fyodor ISHIDA Hajime 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2005年第1期76-85,共10页
Seasonal variation and topography of the mixed layer in the Sea of Japan are studied by comparison of results from long-term observation data analysis and from numerical simulation with the MHI oceanic model (Shapiro.... Seasonal variation and topography of the mixed layer in the Sea of Japan are studied by comparison of results from long-term observation data analysis and from numerical simulation with the MHI oceanic model (Shapiro. 1998. Marine Hydrophysical Journal, 6: 26-40). The data are retrieved from Oceanographic A tlas of the Bering Sea, Okhotsk Sea, and Japan/East Sea (Rostov, Rostov, Dmitrieva, et al. 2003. Pacific Oceanography, 1(1):70-72). The simulated and long-term patterns are compared. An impact of surface buoyancy flux, wind, and convergence/divergence of surface currents upon the mixed layer in the Sea of Japan is analyzed. 展开更多
关键词 numerical modeling circuktion of the Sea of Japan mixed layer depth seasonal variation spatial patterns
下载PDF
A REGIONAL COUPLED AIR-SEA-WAVE MODEL: SIMULATION OF UPPER-OCEAN RESPONSES TO AN IDEALIZED TROPICAL CYCLONE 被引量:4
5
作者 郑运霞 黄伟 于润玲 《Journal of Tropical Meteorology》 SCIE 2015年第3期232-245,共14页
In this study a coupled air-sea-wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air-sea coupled model. The changes of wave state and the effects ... In this study a coupled air-sea-wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air-sea coupled model. The changes of wave state and the effects of sea spray are both considered. Using the complex air-sea-wave model, a set of idealized simulations was applied to investigate the effects of air-sea-wave interaction in the upper ocean. Results show that air-wave coupling can strengthen tropical cyclones while air-sea coupling can weaken them; and air-sea-wave coupling is comparable to that of air-sea coupling, as the intensity is almost unchanged with the wave model coupled to the air-sea coupled model.The mixing by vertical advection is strengthened if the wave effect is considered, and causes much more obvious sea surface temperature(SST) decreases in the upper ocean in the air-sea coupled model. Air-wave coupling strengthens the air-sea heat exchange, while the thermodynamic coupling between the atmosphere and ocean weakens the air-sea heat exchange: the air-sea-wave coupling is the result of their balance. The wave field distribution characteristic is determined by the wind field. Experiments are also conducted to simulate ocean responses to different mixed layer depths.With increasing depth of the initial mixed layer, the decrease of SST weakens, but the temperature decrease of deeper layers is enhanced and the loss of heat in the upper ocean is increased. The significant wave height is larger when the initial mixed layer depth increases. 展开更多
关键词 air-sea-wave coupled model tropical cyclone upper ocean response mixed layer depth
下载PDF
Preliminary Results of Assessing the Mixing of Wave Transport Flux Residualin the Upper Ocean with ROMS 被引量:2
6
作者 SHI Yongfang WU Kejian YANG Yongzeng 《Journal of Ocean University of China》 SCIE CAS 2016年第2期193-200,共8页
The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role... The effects of the mixing of wave transport flux residual(Bvl) on the upper ocean is studied through carrying out the control run(CR) and a series of sensitive runs(SR) with ROMS model.In this study,the important role of Bvl is revealed by comparing the ocean temperature,statistical analysis of errors and evaluating the mixed layer depth.It is shown that the overestimated SST is improved effectively when the wave-induced mixing is incorporated to the vertical mixing scheme.As can be seen from the vertical structure of temperature 28℃ isotherm changes from 20 min CR to 35 m in SR3,which is more close to the observation.Statistic analysis shows that the root-mean-square errors of the temperature in 10 m are reduced and the correlation between model results and observation data are increased after considering the effect of Bvl.The numerical results of the ocean temperature show improvement in summer and in tropical zones in winter,especially in the strong current regions in summer.In August the mixed layer depth(MLD) which is defined as the depth that the temperature has changed 0.5℃ from the reference depth of 10 m is further analyzed.The simulation results have a close relationship with undetermined coefficient of Bvl,sensitivity studies show that a coefficient about 0.1 is reasonable value in the model. 展开更多
关键词 Bvl ocean temperature mixed layer depth ROMS model
下载PDF
Upper ocean high resolution regional modeling of the Arabian Sea and Bay of Bengal 被引量:1
7
作者 Dwivedi Suneet Mishra Alok Kumar Srivastava Atul 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第5期32-50,共19页
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°... In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents. 展开更多
关键词 INDIAN OCEAN modeling Arabian Sea and BAY of BENGAL mixed layer depth transport
下载PDF
考虑穿透性太阳辐射的一维时变海洋混合层数值模式 被引量:2
8
作者 刘志亮 田纪伟 +1 位作者 李柄瑞 牟林 《水动力学研究与进展(A辑)》 CSCD 北大核心 2003年第6期716-724,共9页
 文章针对目前海洋分层模式中确定混合层深度方法的不足,利用最新发展的描述穿透性太阳短波辐射的经验公式,提出了一种易于在海洋分层模式中应用的一维时变混合层模式。并用模式结果与太平洋2°N95°W站点的观测资料进行了比较...  文章针对目前海洋分层模式中确定混合层深度方法的不足,利用最新发展的描述穿透性太阳短波辐射的经验公式,提出了一种易于在海洋分层模式中应用的一维时变混合层模式。并用模式结果与太平洋2°N95°W站点的观测资料进行了比较,结果吻合较好。研究还表明,由于考虑了穿透性太阳短波辐射的影响,新方法能很好地刻画混合层深度的短周期变化。 展开更多
关键词 混合层深度 海洋分层模式 穿透性太阳短波辐射 一维时变混合层模式 太平洋 海洋热力学
下载PDF
季节内SST和混合层深度变化的模式研究 被引量:2
9
作者 孙即霖 吴德星 李国璋 《中国海洋大学学报(自然科学版)》 CAS CSCD 1993年第S2期115-126,共12页
用Niiler—Kraus类型的混合层积分模式,对TOGA—COARE强化观测期间由《实验3号》科学考察船观测资料得到的混合层深度和SST在季节内时间尺度的变化进行了模式研究。指出:1.混合层耗散参数与较长时间尺度过程风应力的变化存在着比较好的... 用Niiler—Kraus类型的混合层积分模式,对TOGA—COARE强化观测期间由《实验3号》科学考察船观测资料得到的混合层深度和SST在季节内时间尺度的变化进行了模式研究。指出:1.混合层耗散参数与较长时间尺度过程风应力的变化存在着比较好的对应关系;2.模式可以较好的对风场和热通量场在季节内时间尺度的变化作出响应,模拟出季节内时间尺度SST的变化;3.Niiler,-Kraus模式在考虑耗散作用后,可用于海洋季节内时间尺度变化的模式研究。 展开更多
关键词 混合层积分模式 混合层深度变化 耗散系数 季节内时间尺度 SST
下载PDF
分层热带海洋模式中的Rossby波和Kelvin波——初始混合层深度异常与大气热力强迫激发波动 被引量:1
10
作者 孙即霖 刘秦玉 朱抱真 《青岛海洋大学学报(自然科学版)》 CSCD 1998年第1期11-16,共6页
利用一个两层半的热带海洋模式,采用数值实验的方法研究了热带海洋对于初始海洋混合层深度异常和大气季节内时间尺度热力强迫激发产生的Rossby波和Kelvin波。研究表明,初始海洋混合层深度异常和大气热力强迫,可以在两层... 利用一个两层半的热带海洋模式,采用数值实验的方法研究了热带海洋对于初始海洋混合层深度异常和大气季节内时间尺度热力强迫激发产生的Rossby波和Kelvin波。研究表明,初始海洋混合层深度异常和大气热力强迫,可以在两层半热带海洋模式中激发产生东向传播具有Kelvin波性质的波动和具有Rossby波性质的波动。热力强迫激发产生海洋Rossby波和Kelvin波所需时间长于初始海洋混合层深度异常和大气季节内动力强迫激发产生两波所需时间,与大气季节内动力强迫激发的Rossby波相比,初始深度异常与大气热力强迫激发产生Rossby波具有不同的热力性质。 展开更多
关键词 热带 海洋模式 罗斯贝波 KELVIN波 大气
下载PDF
BCC_CSM对全球海表温度和混合层深度的模拟评估 被引量:2
11
作者 朱芳泽 王召民 +5 位作者 刘成彦 黄河清 詹德权 葛琛琦 林霞 谢泽林 《大气科学学报》 CSCD 北大核心 2014年第6期684-694,共11页
为了定量评估北京气候中心(BCC)发展的BCC_CSM对当代全球海表温度和混合层深度的模拟能力,以WOA09(World Ocean Atlas 2009)观测资料作为检验模式的气候态实况场,提取包括BCC_CSM在内的CMIP5中的17个海气耦合模式的模拟结果,评估BCC_CS... 为了定量评估北京气候中心(BCC)发展的BCC_CSM对当代全球海表温度和混合层深度的模拟能力,以WOA09(World Ocean Atlas 2009)观测资料作为检验模式的气候态实况场,提取包括BCC_CSM在内的CMIP5中的17个海气耦合模式的模拟结果,评估BCC_CSM模拟的全球海表温度和混合层深度的气候平均态并分析造成偏差的可能原因。结果表明:BCC_CSM模拟的海表温度在北半球中高纬的误差较大,而在其余纬度的模拟性能较佳。偏差的产生主要归因于海洋环流偏差。BCC_CSM模拟的最深混合层在北半球中高纬和南半球高纬地区的误差较大,同时这些区域也是多模式模拟差异最大的区域;其模拟的最浅混合层在南半球中高纬的偏差较大。冬季大西洋经向翻转环流的模拟在北大西洋下沉的位置偏南导致北半球高纬地区海表温度偏冷。由此认为包括BCC_CSM在内的许多海气耦合模式需重点改进对南、北半球深对流海域物理过程的描述,以提高气候预测的可信度。 展开更多
关键词 模式评估 BCC_CSM CMIP5 海表温度 混合层深度
下载PDF
基于高分辨率风场的海洋近惯性能通量计算——时空特征及其影响因素 被引量:1
12
作者 杨兵 侯一筠 《海洋与湖沼》 CAS CSCD 北大核心 2020年第5期978-990,共13页
基于高分辨率CFSR(climate forecast system reanalysis)风场资料、气候态海洋混合层厚度资料和卫星高度计海面高度异常资料,本文估计了大气风场向全球海洋混合层的近惯性能通量和近惯性能量输入功率,并探究了混合层厚度、风场时间分辨... 基于高分辨率CFSR(climate forecast system reanalysis)风场资料、气候态海洋混合层厚度资料和卫星高度计海面高度异常资料,本文估计了大气风场向全球海洋混合层的近惯性能通量和近惯性能量输入功率,并探究了混合层厚度、风场时间分辨率、经验衰减系数和中尺度涡旋涡度对近惯性能通量和能量输入功率的影响。浮标实测风场和流速表明,本文所用的风场和阻尼平板模型可用于估计风场向全球海洋的近惯性能通量。本文计算得到的大气向全球海洋输入近惯性能量的功率为0.56TW(1TW=1012W),其中北半球贡献0.22TW,南半球贡献0.34TW。在时间上,风场的近惯性能通量呈现各个半球冬季最强、夏季最弱的特征,这和西风带风场的季节变化有关。在空间上,近惯性能通量的高值海域为南、北半球西风带海洋,尤其是南大洋。混合层厚度和风场空间不均匀性使得西风带近惯性能通量呈现纬向变化,即海盆西部强于海盆东部。风场时间分辨率对近惯性能通量的估计至关重要,低时间分辨率风场对近惯性能通量的低估达到13%—30%。阻尼平板模型中的经验衰减系数对近惯性能通量估计的影响不超过5%。中尺度涡旋涡度仅改变近惯性能通量的空间分布,而对全球近惯性能量输入功率的影响可以忽略。 展开更多
关键词 近惯性能通量 CFSR风场 阻尼平板模型 混合层厚度 经验衰减系数 中尺度涡旋
下载PDF
Sensitivity study of subgrid scale ocean mixing under sea ice using a two-column ocean grid in climate model CESM
13
作者 Meibing JIN Jennifer HUTCHINGS Yusuke KAWAGUCHI 《Frontiers of Earth Science》 SCIE CAS CSCD 2015年第4期594-604,共11页
Brine drainage from sea ice formation plays a critical role in ocean mixing and seasonal variations of halocline in polar oceans. The horizontal scale of brine drainage and its induced convection is much smaller than ... Brine drainage from sea ice formation plays a critical role in ocean mixing and seasonal variations of halocline in polar oceans. The horizontal scale of brine drainage and its induced convection is much smaller than a climate model grid and a model tends to produce false ocean mixing when brine drainage is averaged over a grid cell. A two-column ocean grid (TCOG) scheme was implemented in the Community Earth System Model (CESM) using coupled sea ice-ocean model setting to explicitly solve the different vertical mixing in the two sub- columns of one model grid with and without brine rejection. The fraction of grid with brine rejection was tested to be equal to the lead fraction or a small constant number in a series of sensitivity model runs forced by the same atmospheric data from 1978 to 2009. The model results were compared to observations from 29 ice tethered profilers (ITP) in the Arctic Ocean Basin from 2004 to 2009. Compared with the control run using a regular ocean grid, the TCOG simulations showed consistent reduction of model errors in salinity and mixed layer depth (MLD). The model using a small constant fraction grid for brine rejection was found to produce the best model comparison with observations, indicating that the horizontal scale of the brine drainage is very small compared to the sea ice cover and even smaller than the lead fraction. Comparable to models using brine rejection parameterization schemes, TCOG achieved more improvements in salinity but similar in MLD. 展开更多
关键词 climate model sea ice mixed-layer depth ocean mixing brine drainage
原文传递
SIMULATION OF OCEAN RESPONSES TO AN IDEALIZED LANDFALLING TROPICAL CYCLONE USING A COUPLED ATMOSPHERE-WAVE-OCEAN MODELING SYSTEM 被引量:1
14
作者 HUIQING LIU BIN LIU +1 位作者 LIAN XIE KEQI ZHANG 《Tropical Cyclone Research and Review》 2012年第3期373-389,共17页
Oceanic responses to a hypothetical landfalling tropical cyclone(TC) are studied by using a coupled atmosphere-wave-ocean modeling system(CAWOMS). A set of experiments are conducted to compare the effects of atmospher... Oceanic responses to a hypothetical landfalling tropical cyclone(TC) are studied by using a coupled atmosphere-wave-ocean modeling system(CAWOMS). A set of experiments are conducted to compare the effects of atmosphere-wave-ocean interaction on ocean responses in coastal and deep waters. The results show that in a three-way coupled atmosphere-wave-ocean system, the resonse to a tropical cyclone is considerably different in coastal water and deep water. In a three-way coupled system, air-sea interactions tend to increase coastal storm surge, inundation, significant wave heights and ocean currents in shallow coastal areas as a result of waveenhanced air-sea heat and moisture fluxes. But the change is little in sea surface temperature and mixed-layer structure due to the well-mixed nature in the coastal zone. In contrast, in a three-way coupled system, air-sea interactions enhance sea surface cooling, increase mixed layer depth in deep waters largely due to the tendency of a wave-enhanced TC to induce strong mixing and entrainment in the upper ocean. A stronger TC also strengthens the surface currents and significant wave height in the offshore waters. The inclusion of waves in air-sea interactions fundamentally changes the dynamic and thermodynamic coupling between tropical cyclone and the underlying ocean. In the absence of TC-wave consideration, a negative feedback between the TC and the upper ocean mixed layer results in a weakening of the TC system and a cooling in the offshore upper ocean and therefore reduces coastal storm surge, flooding areas, significant wave height and ocean currents. Only in a TC-waveocean three-way coupled system, air-sea interaction may correspond to a stronger TC due to wave-induced airsea heat and moisture fluxes which compensate the effect of negative feedback between the TC and the upper ocean. In coastal waters, the negative feedback between the TC and the ocean mixed layer is fairly weak. Airsea interaction is dominated by the positive TC-wave feedback. As a result, air-sea interaction increases coastal storm surge, inundation, currents and significant wave height. 展开更多
关键词 coupled atmosphere-wave-ocean modeling SYSTEM AIR-SEA interaction tropical CYCLONE storm SURGE mixed layer depth
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部