In this contribution,the microscopic fracture mechanism and extension criterion for mixed type crack in ductile material under plane mixed mode loading are investigated in details.A universal extension criterion for t...In this contribution,the microscopic fracture mechanism and extension criterion for mixed type crack in ductile material under plane mixed mode loading are investigated in details.A universal extension criterion for the mixed type crack,i.e.the crack propagates along the direction of the maximum gradient of equivalent stress,is suggested.This new criterion is used to predict the propagation direction of mixed type crack,showing a good agreement with other theories for different types of mode mixity.Moreover,the numerical verification is also carried out for the case of an edge crack with different mixed mode loadings.Finally,a potential application to three-dimensional fracture in the ductile material induced by holes is also discussed.展开更多
基金supported by the Natural Science Foundation of Shannxi (No. 2005A19)the Open Foundation of Engineering Key Laboratory of Disaster Prevention and Structural Safety,Guangxi Univ.(No. 2008TMKF004)the National Natural Science Foundation (Nos. 10932007 and 11172228)
文摘In this contribution,the microscopic fracture mechanism and extension criterion for mixed type crack in ductile material under plane mixed mode loading are investigated in details.A universal extension criterion for the mixed type crack,i.e.the crack propagates along the direction of the maximum gradient of equivalent stress,is suggested.This new criterion is used to predict the propagation direction of mixed type crack,showing a good agreement with other theories for different types of mode mixity.Moreover,the numerical verification is also carried out for the case of an edge crack with different mixed mode loadings.Finally,a potential application to three-dimensional fracture in the ductile material induced by holes is also discussed.