A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasifica...A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1MO1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mobased catalysts. The carbon conversion significantly increases with rising temperature below 340 ℃, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kg catal·h) with the C2+ (C2-C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based cata- lysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.展开更多
The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation en...The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation energy, relative amount of harmful pollutant like sulphur containing gases have been investigated by thermogravimetry in steam gasification under temperature 750℃ to 950℃ at ambient pressure for three high-metarnorphous anthracites (Longyan, Fenghai and Youxia coals in Fujian Province). The mixed catalyst of 3%Ca+5%Na-BL increases greatly the carbon conversion and gasification rate constant by accelerating the gasification reaction C+H2O→CO+H2 due to presence of alkali surfacecompounds [COM], [CO2M] and exchanged calcium phenolate and calcium carboxylate (-COO)2. By adding CaCO3 into BL catalyst in gasification, in addition to improving the catalyst function and enhancing the carbon conversion, the effective desulphurization is also achieved, but the better operating temperature should be below 900℃. The homogenous and shrinking core models can be successfully employed to correlate the relations between the conversion and the gasification .time .and to estimate the reaction rate constant, The reaction acUvaUon energy and pre-exponential factor are estimated and the activation energy for mixed catalyst is in a range of 98.72-166.92 kJ·mol^-1, much less than 177.50-196.46 kJ·mol^-1 for non-catalytic steam gasification for three experimental coals.展开更多
Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effe...Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.展开更多
Kinetics model was developed for the mixed (steam and dry) reforming of methane, which is useful for the control of H2/CO ratio. The equilibrium constants of reaction rate were determined using the experimental equi...Kinetics model was developed for the mixed (steam and dry) reforming of methane, which is useful for the control of H2/CO ratio. The equilibrium constants of reaction rate were determined using the experimental equilibrium data at different reaction temperatures, while the forward reaction rate constants were estimated using the experimental data under non-equilibrium (high inert fraction and high space velocity) conditions. The comparison between calculated and experimental data clearly showed that the developed model described satisfactorily, and further analysis using the parametric sensitivity determined the wall temperature and CO2 fraction in the feed gas as effective parameters for the manipulation of CH4 conversion and H2/CO ratio of synthesis gas under the equilibrium condition. Meanwhile, the inert fraction, rather than the residence time, was selected as additional parameter under non-equilibrium condition.展开更多
The catalysts with Rh loading on different cerium-zirconium mixed oxides were characterized by BET, H2-TPR and OSC. The effects of different cerium-zirconium mixed oxides on catalytic performance and thermal stability...The catalysts with Rh loading on different cerium-zirconium mixed oxides were characterized by BET, H2-TPR and OSC. The effects of different cerium-zirconium mixed oxides on catalytic performance and thermal stability of Rh loaded catalyst were studied. The results show that: (1) Rh can enhance cerium-zirconium mixed oxides OSC and catalytic reaction rates; (2) cerium-zirconium mixed oxides with high Ce contents and low Zr contents are more favorable to the stability of catalysts. Moreover, the contents of CeO2 have important effect on catalysts characteristics, and the addition of some rare earth components, such as La, Pr and Nd also have some influences.展开更多
CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for...CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.展开更多
The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C b...The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C bonds in mixed polyolefin plastics over non-noble metal catalysts under mild conditions. The nickelbased catalyst involving Ni_(2)Al_(3) phase enables the direct transformation of mixed polyolefin plastics into natural gas, and the gas carbon yield reaches up to 89.6%. Reaction pathway investigation reveals that natural gas comes from the stepwise catalytic cleavage of C–C bonds in polypropylene, and the catalyst prefers catalytic cleavage of terminal C–C bond in the side-chain with the low energy barrier.Additionally, our developed approach is evaluated by the technical economic analysis for an economically competitive production process.展开更多
Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. Different compositions of ferrite, Zn_((1-x))Cu_xFe_2O_4(x=0.0, 0.25, 0.50, 0.75), characterized by XRD, reveal single phase inverse spine...Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. Different compositions of ferrite, Zn_((1-x))Cu_xFe_2O_4(x=0.0, 0.25, 0.50, 0.75), characterized by XRD, reveal single phase inverse spinel in all the samples. With increasing copper content, the crystallite size increases. The surface morphology of all the samples, studied by SEM, shows porous structure of particles. The prepared samples were also analyzed by FT-IR and TEM. Catalytic activity of the samples was studied on lanthanum oxalate decomposition by thermogravimety.The rate constant k has the highest value with x=0.75 and 5%(mole fraction) of the catalyst and is attributed to high copper content, the mixed sites Cu^(2+)-Fe^+ and/or Cu^+-Fe^(2+) ion pairs besides the one component sites Cu^(2+)-Cu^+, Fe^(3+)-Fe^(2+), as a result of mutual charge interaction. In other words, the increasing activity of mixed oxides is attributed to increase in the content of active sites via creation of new ion pairs. With increasing Zn content, particle size increases. Variation of catalytic activity of ferrite powders is due to the changes of the valence state of catalytically active components of the ferrites, which oxidizes the carbon monoxide released from lanthanum oxalate.展开更多
A new rapid determination method of wastewater COD in mixed acid solution H_2SO_4-H_3PO_4,with Mn(H_2PO_4)_2 as catalyst,has been proposed in this paper. Through orthogonal experiment, the optimal test conditions have...A new rapid determination method of wastewater COD in mixed acid solution H_2SO_4-H_3PO_4,with Mn(H_2PO_4)_2 as catalyst,has been proposed in this paper. Through orthogonal experiment, the optimal test conditions have been determined: Mn(H_2PO_4)_2:0. 3g,H_2SO_4:H_3PO_4=6:1(V/V),reflux time:5 minutes. The results were similar to that of the standard method, but the test time was only 1/24 of that and the test cost decreased 85%.展开更多
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo spe...Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo^5+, Mo^4+, S^2- and S^2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction.展开更多
Several Mo-V-Te-O mixed metal oxides catalysts with different dopant were prepared and used for catalytic oxidation propane to acrolein. It was revealed that the addition of P could greatly improve the performance of ...Several Mo-V-Te-O mixed metal oxides catalysts with different dopant were prepared and used for catalytic oxidation propane to acrolein. It was revealed that the addition of P could greatly improve the performance of the Mo-V-Te-O catalyst. The catalysts were examined by XRD and H2-TPR. The XRD characteristic of the Mo-V-Te-P-O showed that the addition of P could aggrandize the (V0.07Mo0.93)5O14 phase. H2-TPR illuminated that the MoV0.3Te0.23P0.15On catalyst took on the best redox ability.展开更多
A series of catalysts with (Ce-Zr-La-Pr)O contents range from 0 to 50% in coating and single-palladium loads on substrates were prepared to study effects of (Ce-Zr-La-Pr)O contents on catalytic activities and durabili...A series of catalysts with (Ce-Zr-La-Pr)O contents range from 0 to 50% in coating and single-palladium loads on substrates were prepared to study effects of (Ce-Zr-La-Pr)O contents on catalytic activities and durability by contrasting the characteristics of light-off, A/F and catalytic conversions of the fresh catalysts with that of the aged catalysts. The results show that (Ce-Zr-La-Pr)O can enhance the catalysts light-off characteristics, widen A/F windows and increase catalytic conversions at a certain extent through optimizing physical structural and chemical property of the mixed coating. However, (Ce-Zr-La-Pr)O contents influence greatly on the catalysts activities and durability, and the catalysts with contents ranging from 10% to 30% exhibited better integrative properties in all samples, and 10% was the optical content to make the catalyst performance highest in this thesis. It is indicated that an suitable content of (Ce-Zr-La-Pr)O plays an important role in assisting catalysis, enhancing durability and increasing oxygen storage capability.展开更多
Developing catalysts with not only hydrogenation activity but also cracking activity is very important for the advancement of suspended-bed hydrocracking technology.Within this respect,MoS_(2)/SiO_(2)-Al_(2)O_(3)bifun...Developing catalysts with not only hydrogenation activity but also cracking activity is very important for the advancement of suspended-bed hydrocracking technology.Within this respect,MoS_(2)/SiO_(2)-Al_(2)O_(3)bifunctional catalyst is a kind of typical catalysts with both hydrogenation and cracking activity.Herein,a series of Zr-doped SiO_(2)-Al_(2)O_(3)mixed oxides were synthesized by a sol-gel coupled with hydrothermal method.The synthesized mixed oxides were characterized for chemical structures and acidic properties.It is found that doping SiO_(2)-Al_(2)O_(3)with Zr atoms significantly increases the numbers of acidic sites.The Zr-doped SiO_(2)-Al_(2)O_(3)mixed oxides were then combined with dispersed MoS_(2),which was in-situ produced from oil-soluble Mo precursors,to fabricate a novel kind of bifunctional catalysts for suspended-bed hydrocracking of heavy oils.Owing to the significantly increased numbers of acidic sites in Zr-doped SiO_(2)-Al_(2)O_(3)mixed oxides,corresponding bifunctional catalysts demonstrate much enhanced activity for suspended-bed hydrocracking of heavy oils in relative to MoS_(2)/SiO_(2)-Al_(2)O_(3)bifunctional catalysts.展开更多
Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as P...Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as Pt precursors, and the mixed oxide of (Ce-Zr-La-Pr)O as base material to prepare a series of catalysts, and their performances of the catalysts were studied by TPR and CO pulse titration technologies. The results shown that Pt precursors and their solutions pH values influenced the oxygen storage capabilities, the active metal distribution degrees of the catalysts obviously, and every catalyst prepared by different precursors had an optimal pH values. It indicates that the active metals precursors and their solutions acidities have outstanding influences on the catalysts performances for the mutual effects existing between the active metals and the Rare Earth metal oxides, which results from the mate groups of the precursors and the solution acidity.展开更多
The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic re...The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic reactor. The effects of catalyst dilution on the catalytic performance of the MoVTeNb mixed oxide catalyst in selective oxidation of propane to acrylic acid were also investigated. The effects of some reaction parameters, such as gas hourly space velocity (GHSV) and reaction temperature, for selective oxidation of propane to acrylic acid over diluted MoVTeNb catalyst have also been studied. The configuration of the nanoflow is shown to be suitable for screen catalytic performance, and its operating conditions were mimicked closely to conventional laboratory as well as to industrial conditions. The results obtained provided very good reproducibility and it showed that preparation methods as well as reaction parameters can play significant roles in catalytic performance of these catalysts.展开更多
Lignin is the world's greatest renewable aromatic biofeedstock,and it has promising applications in high value-added chemical products.Herein,N-Co/ATP-CZO was used as a catalyst for the depolymerization of alkali ...Lignin is the world's greatest renewable aromatic biofeedstock,and it has promising applications in high value-added chemical products.Herein,N-Co/ATP-CZO was used as a catalyst for the depolymerization of alkali lignin in ethanol and isopropanol systems,and explored the effects of formic acid(FA)amount,reaction time,reaction temperature and other factors on the depolymerization of alkali lignin.Among them,formic acid serves as both catalytic and in situ-hydrogen donor.Ultimately,the highest yield of bio-oil(59.28%(mass)),including 30.05%(mass)of monomer,was obtained after a reaction of FA to alkali lignin mass ratio of 4 and 240°C for 8 h.Among the monomers,the yield of Guaiacol was the highest(5.94%(mass)),followed by 2-methoxy-4-methylphenol(5.74%(mass)).This study,the modification of attapulgite was carried out to reduce the acidity while enhancing the catalytic activity for depolymerization,and the selection of hydrogen donor was investigated.A feasible pathway for lignin depolymerization research was opened.展开更多
A series of Mn-Cu mixed oxide catalysts were prepared by precipitation method. The catalysts were characterized by N2 adsorp- tion-desorption, H2-TPR and XPS. When the loading ratio of manganese oxides to copper oxide...A series of Mn-Cu mixed oxide catalysts were prepared by precipitation method. The catalysts were characterized by N2 adsorp- tion-desorption, H2-TPR and XPS. When the loading ratio of manganese oxides to copper oxides was 8:2 or 7:3, the catalysts possessed better catalytic activity, and benzene was converted completely at 558 K. Results of H2-TPR showed that the loading of a small amount of copper oxides decreased the reduction temperature of catalysts. Results of XPS showed that the loading of a small amount of copper oxides increased the proportion of manganese and defective oxygen on the surface of catalysts, and stabilized manganese at higher oxidation state. And the catalyst with the loading ratio 7:3 was a little worse than 8:2, since the interaction between manganese oxides and copper oxides is too strong, copper oxides migrate to the surface of catalysts and manganese oxides in excess are immerged.展开更多
基金This work is supported Technical Research and by the National High Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the National Natural Science Foundation of China (No.50772107).
文摘A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1MO1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mobased catalysts. The carbon conversion significantly increases with rising temperature below 340 ℃, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kg catal·h) with the C2+ (C2-C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based cata- lysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.
基金Supported by the National Natural Science Foundation of China (20376014) and Fujian Science and Technology Council Grant (HG99-01 ).
文摘The catalytic effects of single and mixed catalysts, i.e. single 3%Ca and 5%Na-BL(black liquor) catalysts and mixed 3%Ca+5%Na-BL catalyst, on carbon conversion, gasification reaction rate constant and activation energy, relative amount of harmful pollutant like sulphur containing gases have been investigated by thermogravimetry in steam gasification under temperature 750℃ to 950℃ at ambient pressure for three high-metarnorphous anthracites (Longyan, Fenghai and Youxia coals in Fujian Province). The mixed catalyst of 3%Ca+5%Na-BL increases greatly the carbon conversion and gasification rate constant by accelerating the gasification reaction C+H2O→CO+H2 due to presence of alkali surfacecompounds [COM], [CO2M] and exchanged calcium phenolate and calcium carboxylate (-COO)2. By adding CaCO3 into BL catalyst in gasification, in addition to improving the catalyst function and enhancing the carbon conversion, the effective desulphurization is also achieved, but the better operating temperature should be below 900℃. The homogenous and shrinking core models can be successfully employed to correlate the relations between the conversion and the gasification .time .and to estimate the reaction rate constant, The reaction acUvaUon energy and pre-exponential factor are estimated and the activation energy for mixed catalyst is in a range of 98.72-166.92 kJ·mol^-1, much less than 177.50-196.46 kJ·mol^-1 for non-catalytic steam gasification for three experimental coals.
文摘Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.
基金supported by the Energy Efficiency & Resources Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Knowledge Economy (No. 2006CCC11P011B-21-2-100)Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0003380)
文摘Kinetics model was developed for the mixed (steam and dry) reforming of methane, which is useful for the control of H2/CO ratio. The equilibrium constants of reaction rate were determined using the experimental equilibrium data at different reaction temperatures, while the forward reaction rate constants were estimated using the experimental data under non-equilibrium (high inert fraction and high space velocity) conditions. The comparison between calculated and experimental data clearly showed that the developed model described satisfactorily, and further analysis using the parametric sensitivity determined the wall temperature and CO2 fraction in the feed gas as effective parameters for the manipulation of CH4 conversion and H2/CO ratio of synthesis gas under the equilibrium condition. Meanwhile, the inert fraction, rather than the residence time, was selected as additional parameter under non-equilibrium condition.
基金Project supported by Yunnan Province Science Technology Program (2002C001Z) the National High Technology Research and Development Program ( 863 ) of China ( 2002AA321060 ) Yunnan Province Science Technology Program (2004B0028Q)
文摘The catalysts with Rh loading on different cerium-zirconium mixed oxides were characterized by BET, H2-TPR and OSC. The effects of different cerium-zirconium mixed oxides on catalytic performance and thermal stability of Rh loaded catalyst were studied. The results show that: (1) Rh can enhance cerium-zirconium mixed oxides OSC and catalytic reaction rates; (2) cerium-zirconium mixed oxides with high Ce contents and low Zr contents are more favorable to the stability of catalysts. Moreover, the contents of CeO2 have important effect on catalysts characteristics, and the addition of some rare earth components, such as La, Pr and Nd also have some influences.
基金PRIN 2006, "Caratterizzazione spettroscopica e morfologica di Me-POSS eterogeneizzati", MEL Chemicals
文摘CeO2-ZeO2 solid solutions are extensively used as oxygen storage promoters in the current automotive three-way catalysts. High thermal stability of the textural properties is one of the most important requirements for practical application since temperatures up to 1273 K are easily experienced by these materials under real working conditions. In the present paper, we investigated how hydrothermal treatments applied to cakes of doped and undoped ZrO2-rich CeO2-ZrO2 precursors might improve the thermal stability of the final CeO2-ZrO2 solid solution. A rationale was developed that allowed to correlate the morphology of the hydrothermaUy treated cake with the thermal stability at 1273 K of the final product, which did not depend on the composition of the mixed oxides.
基金supported by the National Natural Science Foundation of China (grant 22208339)the China Postdoctoral Science Foundation (2021M693132)+2 种基金the National Key R&D Program of China (2019YFC1905303)the Doctoral Scientific Research Foundation of Liaoning Province (2021-BS-006)the Youth Innovation Fund of Dalian Institute of Chemical Physics (DICP I202132)。
文摘The inert carbon–carbon(C–C) bonds cleavage is a main bottleneck in the chemical upcycling of recalcitrant polyolefin plastics waste. Here we develop an efficient strategy to catalyze the complete cleavage of C–C bonds in mixed polyolefin plastics over non-noble metal catalysts under mild conditions. The nickelbased catalyst involving Ni_(2)Al_(3) phase enables the direct transformation of mixed polyolefin plastics into natural gas, and the gas carbon yield reaches up to 89.6%. Reaction pathway investigation reveals that natural gas comes from the stepwise catalytic cleavage of C–C bonds in polypropylene, and the catalyst prefers catalytic cleavage of terminal C–C bond in the side-chain with the low energy barrier.Additionally, our developed approach is evaluated by the technical economic analysis for an economically competitive production process.
文摘Nanostructured zinc-copper mixed ferrite was synthesized using sol-gel method. Different compositions of ferrite, Zn_((1-x))Cu_xFe_2O_4(x=0.0, 0.25, 0.50, 0.75), characterized by XRD, reveal single phase inverse spinel in all the samples. With increasing copper content, the crystallite size increases. The surface morphology of all the samples, studied by SEM, shows porous structure of particles. The prepared samples were also analyzed by FT-IR and TEM. Catalytic activity of the samples was studied on lanthanum oxalate decomposition by thermogravimety.The rate constant k has the highest value with x=0.75 and 5%(mole fraction) of the catalyst and is attributed to high copper content, the mixed sites Cu^(2+)-Fe^+ and/or Cu^+-Fe^(2+) ion pairs besides the one component sites Cu^(2+)-Cu^+, Fe^(3+)-Fe^(2+), as a result of mutual charge interaction. In other words, the increasing activity of mixed oxides is attributed to increase in the content of active sites via creation of new ion pairs. With increasing Zn content, particle size increases. Variation of catalytic activity of ferrite powders is due to the changes of the valence state of catalytically active components of the ferrites, which oxidizes the carbon monoxide released from lanthanum oxalate.
文摘A new rapid determination method of wastewater COD in mixed acid solution H_2SO_4-H_3PO_4,with Mn(H_2PO_4)_2 as catalyst,has been proposed in this paper. Through orthogonal experiment, the optimal test conditions have been determined: Mn(H_2PO_4)_2:0. 3g,H_2SO_4:H_3PO_4=6:1(V/V),reflux time:5 minutes. The results were similar to that of the standard method, but the test time was only 1/24 of that and the test cost decreased 85%.
文摘Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo^5+, Mo^4+, S^2- and S^2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction.
文摘Several Mo-V-Te-O mixed metal oxides catalysts with different dopant were prepared and used for catalytic oxidation propane to acrolein. It was revealed that the addition of P could greatly improve the performance of the Mo-V-Te-O catalyst. The catalysts were examined by XRD and H2-TPR. The XRD characteristic of the Mo-V-Te-P-O showed that the addition of P could aggrandize the (V0.07Mo0.93)5O14 phase. H2-TPR illuminated that the MoV0.3Te0.23P0.15On catalyst took on the best redox ability.
文摘A series of catalysts with (Ce-Zr-La-Pr)O contents range from 0 to 50% in coating and single-palladium loads on substrates were prepared to study effects of (Ce-Zr-La-Pr)O contents on catalytic activities and durability by contrasting the characteristics of light-off, A/F and catalytic conversions of the fresh catalysts with that of the aged catalysts. The results show that (Ce-Zr-La-Pr)O can enhance the catalysts light-off characteristics, widen A/F windows and increase catalytic conversions at a certain extent through optimizing physical structural and chemical property of the mixed coating. However, (Ce-Zr-La-Pr)O contents influence greatly on the catalysts activities and durability, and the catalysts with contents ranging from 10% to 30% exhibited better integrative properties in all samples, and 10% was the optical content to make the catalyst performance highest in this thesis. It is indicated that an suitable content of (Ce-Zr-La-Pr)O plays an important role in assisting catalysis, enhancing durability and increasing oxygen storage capability.
基金the National Key Research&Development Program of China(2018YFA0209403)the National Natural Science Foundation of China(U1662108)the Science and Technology Project of Fujian Province(FG-2016002).
文摘Developing catalysts with not only hydrogenation activity but also cracking activity is very important for the advancement of suspended-bed hydrocracking technology.Within this respect,MoS_(2)/SiO_(2)-Al_(2)O_(3)bifunctional catalyst is a kind of typical catalysts with both hydrogenation and cracking activity.Herein,a series of Zr-doped SiO_(2)-Al_(2)O_(3)mixed oxides were synthesized by a sol-gel coupled with hydrothermal method.The synthesized mixed oxides were characterized for chemical structures and acidic properties.It is found that doping SiO_(2)-Al_(2)O_(3)with Zr atoms significantly increases the numbers of acidic sites.The Zr-doped SiO_(2)-Al_(2)O_(3)mixed oxides were then combined with dispersed MoS_(2),which was in-situ produced from oil-soluble Mo precursors,to fabricate a novel kind of bifunctional catalysts for suspended-bed hydrocracking of heavy oils.Owing to the significantly increased numbers of acidic sites in Zr-doped SiO_(2)-Al_(2)O_(3)mixed oxides,corresponding bifunctional catalysts demonstrate much enhanced activity for suspended-bed hydrocracking of heavy oils in relative to MoS_(2)/SiO_(2)-Al_(2)O_(3)bifunctional catalysts.
基金Project supported by the National High Technology Research and Development Programs (863 ) of China (2002 AA321060, 2004AA649040) Yunnan Province Science Technology Program (2004B0028Q)
文摘Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as Pt precursors, and the mixed oxide of (Ce-Zr-La-Pr)O as base material to prepare a series of catalysts, and their performances of the catalysts were studied by TPR and CO pulse titration technologies. The results shown that Pt precursors and their solutions pH values influenced the oxygen storage capabilities, the active metal distribution degrees of the catalysts obviously, and every catalyst prepared by different precursors had an optimal pH values. It indicates that the active metals precursors and their solutions acidities have outstanding influences on the catalysts performances for the mutual effects existing between the active metals and the Rare Earth metal oxides, which results from the mate groups of the precursors and the solution acidity.
基金Ministry of Science Technology and Innovation (MOSTI),Malaysia,project number:IRPA RM8 SR33-02-03-3010.
文摘The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic reactor. The effects of catalyst dilution on the catalytic performance of the MoVTeNb mixed oxide catalyst in selective oxidation of propane to acrylic acid were also investigated. The effects of some reaction parameters, such as gas hourly space velocity (GHSV) and reaction temperature, for selective oxidation of propane to acrylic acid over diluted MoVTeNb catalyst have also been studied. The configuration of the nanoflow is shown to be suitable for screen catalytic performance, and its operating conditions were mimicked closely to conventional laboratory as well as to industrial conditions. The results obtained provided very good reproducibility and it showed that preparation methods as well as reaction parameters can play significant roles in catalytic performance of these catalysts.
基金financially supported by National Natural Science Foundation of China (21774059)。
文摘Lignin is the world's greatest renewable aromatic biofeedstock,and it has promising applications in high value-added chemical products.Herein,N-Co/ATP-CZO was used as a catalyst for the depolymerization of alkali lignin in ethanol and isopropanol systems,and explored the effects of formic acid(FA)amount,reaction time,reaction temperature and other factors on the depolymerization of alkali lignin.Among them,formic acid serves as both catalytic and in situ-hydrogen donor.Ultimately,the highest yield of bio-oil(59.28%(mass)),including 30.05%(mass)of monomer,was obtained after a reaction of FA to alkali lignin mass ratio of 4 and 240°C for 8 h.Among the monomers,the yield of Guaiacol was the highest(5.94%(mass)),followed by 2-methoxy-4-methylphenol(5.74%(mass)).This study,the modification of attapulgite was carried out to reduce the acidity while enhancing the catalytic activity for depolymerization,and the selection of hydrogen donor was investigated.A feasible pathway for lignin depolymerization research was opened.
基金Project supported by National Natural Science Foundation of China (20773090)the National High Technology Research and Development Program of China (863 Program, 2006AA06Z347)the Youth Fund of Sichuan University (2008119)
文摘A series of Mn-Cu mixed oxide catalysts were prepared by precipitation method. The catalysts were characterized by N2 adsorp- tion-desorption, H2-TPR and XPS. When the loading ratio of manganese oxides to copper oxides was 8:2 or 7:3, the catalysts possessed better catalytic activity, and benzene was converted completely at 558 K. Results of H2-TPR showed that the loading of a small amount of copper oxides decreased the reduction temperature of catalysts. Results of XPS showed that the loading of a small amount of copper oxides increased the proportion of manganese and defective oxygen on the surface of catalysts, and stabilized manganese at higher oxidation state. And the catalyst with the loading ratio 7:3 was a little worse than 8:2, since the interaction between manganese oxides and copper oxides is too strong, copper oxides migrate to the surface of catalysts and manganese oxides in excess are immerged.