For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular be...For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.展开更多
Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effecti...Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.展开更多
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The stru...Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.展开更多
TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical pr...TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical properties of the TiOz/Au/TiO2 multilayer films can be tailored to suit different applications. The thickness and optical properties of the Au layer and the quality of the Au-dielectric interfaces are critical for the electrical and optical performance of the Au-dielectric multilayer thin films. At the thickness of 8 rim, the Au layer forms a continuous structure having the lowest resistivity and it must be thin for high transmittance. The multilayer stack can be optimized to have a sheet resistance of 6 D./sq. at a transmittance over 80% at 680 nm in wavelength. The peak transmittance shifts towards the long wavelength region when the thickness of the two TiO2 (upper and lower) layers increases. When the film thickness of the two TiO2 film is 45 nm, a high transmittance value is obtained for the entire visible light wavelength region.展开更多
ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, ph...ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, photolu- minescence and electrical resistivity measurements, respectively. The results show that the UV emission is at a constant peak position in the photoluminescence spectra. Meanwhile, their electrical resistivity decreases to very low level approaching to the value of the CdO film, which can be explained by the Matthiessen composite rule for resistivity. The peculiarity of low resistivity and high transnlittance in the visible region enables these Rims suitable for optoelectronic device fabrication.展开更多
In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uni...In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field.展开更多
The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigate...The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.展开更多
The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<...The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<0.62 is discussed.The mixed phases are taken into account by our weight model of fitting.The states of excitons are obtained by a finite difference method and a variational procedure in consideration of built-in electric fields(BEFs)and the Hartree potential.The optical absorption coefficients(OACs)of exciton interstate transition are obtained by the density matrix method.The results show that Hartree potential bends the conduction and valence bands,whereas a BEF tilts the bands and the combined effect enforces electrons and holes to approach the opposite interfaces to decrease the Coulomb interaction effects between electrons and holes.Furthermore,the OACs indicate a transformation between direct and indirect excitons in zinc-blende ADQWs due to the quantum confinement effects.There are two kinds of peaks corresponding to wurtzite and zinc-blende structures respectively,and the OACs merge together under some special conditions.The computed result of exciton interband emission energy agrees well with a previous experiment.Our conclusions are helpful for further relative theoretical studies,experiments,and design of devices consisting of these quantum well structures.展开更多
Two-dimensional (2D) metamaterials are considered to be of enormous relevance to the progress of all exact sciences. Since the discovery of graphene, researchers have increasingly investigated in depth the details o...Two-dimensional (2D) metamaterials are considered to be of enormous relevance to the progress of all exact sciences. Since the discovery of graphene, researchers have increasingly investigated in depth the details of electrical/optical proper- ties pertinent to other 2D metamaterials, including those relating to the silicene. In this review are included the details and comparisons of the atomic structures, energy diagram bands, substrates, charge densities, charge mobilities, conductivities, absorptions, electrical permittivities, dispersion relations of the wave vectors, and supported electromagnetic modes related to graphene and silicene. Hence, this review can help readers to acquire, recover or increase the necessary technological basis for the development of more specific studies on graphene and silicene.展开更多
This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark cur...This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark current, resistancearea product, absorption coefficient and quantum efficiency characteristics are thoroughly examined. The superlattice is residually n-type and it becomes slightly p-type by varying beryllium-doping concentrations, which improves its electrical performances. The optical performances remain almost unaffected with relatively low p-doping levels and begin to deteriorate with increasing p-doping density. To make a compromise between the electrical and optical performances, the photodetector with a doping concentration of 3 ×10^15 cm-3 in the active region is believed to have the best overall performances.展开更多
The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the v...The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film.展开更多
ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r...ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.展开更多
The structure, electrical transport, and optical properties of GaSe films fabricated by means of radio-frequency (RF) magnetron sputtering in Ar were investigated. The as-sputtered GaSe films were amorphous, and their...The structure, electrical transport, and optical properties of GaSe films fabricated by means of radio-frequency (RF) magnetron sputtering in Ar were investigated. The as-sputtered GaSe films were amorphous, and their optical energy gap Eg are 1.9~2.6 eV. The effect of the synthesis conditions on the optical and electrical properties of the GaSe films has also been studied展开更多
The following article has been retracted due to the fact that the authors practise fraud. The scientific community takes a very strong view on this matter, and the Advances in Materials Physics and Chemistry treats al...The following article has been retracted due to the fact that the authors practise fraud. The scientific community takes a very strong view on this matter, and the Advances in Materials Physics and Chemistry treats all unethical behavior seriously. This paper published in Vol. 4 No. 10 194-202, 2014 has been removed from this site. ? Title: Investigation on the Effect of Film Thickness on the Surface Morphology, Electrical and Optical Properties of E-Beam Deposited Indium Tin Oxide (ITO) Thin Film ? Authors: Golam Saklayen, Shahinul Islam, Ferdous Rahman, Abu Bakar展开更多
We report the structural, optical and electrical properties of Graphene-Vanadium oxide nanoparticles (rGO/VO-NPs) nanocomposites prepared via a hydrothermal method on glass substrates. The samples have been characteri...We report the structural, optical and electrical properties of Graphene-Vanadium oxide nanoparticles (rGO/VO-NPs) nanocomposites prepared via a hydrothermal method on glass substrates. The samples have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, ultraviolet-visible spectra (Uv-Vis) (absorbance/reflectance) and electrical conductivity. Our results are revealing a remarkable effect on the morphology and structure of vanadium oxide nanoparticles. Hence, the graphene layers improved their electrical conductivity and highly influenced their optical properties. Therefore, the obtained results may lead to better performance for a large field of applications.展开更多
Indium-tin-oxide(ITO)films were prepared on the quarts glass by sol-gel technique.Effects of different heat treatment temperatures and cooling methods on the morphological,optical and electrical properties of ITO film...Indium-tin-oxide(ITO)films were prepared on the quarts glass by sol-gel technique.Effects of different heat treatment temperatures and cooling methods on the morphological,optical and electrical properties of ITO films were measured by TG/DTA, IR,XRD,SEM,UV-VIS spectrometer and four-probe apparatus.It is found that the crystallized ITO films exhibit a polycrystalline cubic bixbyite structure.The heat treatment process has significant effects on the morphological,optical and electrical properties of ITO films.Elevating the heat treatment temperature can perfect the crystallization process of ITO films,therefore the optical and electrical properties of ITO films are improved.But the further increasing of heat treatment temperature results in the increment of ITO films’resistivity.Compared with ITO films elaborated by furnace cooling,those prepared through air cooling have following characteristics as obviously decreased crystalline size,deeply declined porosity,more compact micro-morphology,improved electrical property and slightly decreased optical transmission.展开更多
The electrical conductivity of sintered Cr2O3 mixed with 2% and 5% (in molar fraction) TiO2 or CuO was investigated in the temperature range 500-900℃ in air and in At/4 vol. pct H2 atmospheres. The effect of differ...The electrical conductivity of sintered Cr2O3 mixed with 2% and 5% (in molar fraction) TiO2 or CuO was investigated in the temperature range 500-900℃ in air and in At/4 vol. pct H2 atmospheres. The effect of different Mn-oxides on the electrical conductivity of Cr2O3 was also studied under the same conditions. From the conductivity measurements it is established that additions of TiO2 change the defect structure of Cr2O3 and the effect of TiO2 on the electrical conductivity is controlled by TiO2 concentration as well as temperature and O2 partial pressure of the surrounding atmosphere. The conductivity of Cr2O3 increased in air and decreased in the At/H2 atmosphere by CuO additions. The effect of CuO was discussed with possible changes in the defect concentration in Cr2O3. Mixing of Cr2O3 with different Mn-oxides at the same Mn to metal atom fraction decreased the conductivity in air and in Ar/H2 atmospheres. No clear correlation between the spinel fraction and the changes in conductivity could be found.展开更多
Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO t...Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO thin films deposited at different In2O3 target powers are investigated. IZO thin films grown at different In2O3 target sputtering powers show evident morphological variation and different grain sizes. As the In2O3 sputtering power rises, the grain size becomes larger and electrical mobility increases. The film grown with an In2O3 target power of 100 W displays the highest electrical mobility of 13.5 cm.V-1-s-1 and the lowest resistivity of 2.4× 10^-3 Ω.cm. The average optical transmittance of the IZO thin film in the visible region reaches 80% and the band gap broadens with the increase of In2O3 target power, which is attributed to the increase in carrier concentration and is in accordance with Burstein-Moss shift theory.展开更多
The effects of copper-vacancy on the electrical, optical and thermoelectric properties of CuInTe2 have been investigated by the first-principles calculations and semi-classical Boltzmann theory. The estimated results ...The effects of copper-vacancy on the electrical, optical and thermoelectric properties of CuInTe2 have been investigated by the first-principles calculations and semi-classical Boltzmann theory. The estimated results of copper vacancy formation energies for Cu1-xn Te2(x = 0,1/16, 1/8 and 1/4) showed it is more difficult to prepare the sample with higher copper vacancy concentration. From the calculated energy band structures with MBJ-GGA, it can be seen that they are p-type semiconductors and the energy gap values increase with the vacancy concentration increasing. The wavelength is smaller than 460 nm, and the high copper vacancy concentration(x =1/4) is helpful to the values of absorption coefficient, while above 460 nm, the lower copper vacancy concentration(x = 1/16) is able to enhance the absorption coefficient. The lower copper vacancy concentration(x = 1/16) is more favorable to improve the power factor in low or middle temperature. However, the high copper vacancy concentration(x = 1/4) is better in high temperature. These results give hints for the design of CuInTe2 as the good photovoltaic and thermoelectric materials.展开更多
基金Project supported by the Enterprise Science and Technology Correspondent for Guangdong Province,China (Grant No.GDKTP2021015200)。
文摘For the crystalline temperature of BaSnO_(3)(BTO)was above 650℃,the transparent conductive BTO-based films were always deposited above this temperature on epitaxy substrates by pulsed laser deposition or molecular beam epitaxy till now which limited there application in low temperature device process.In the article,the microstructure,optical and electrical of BTO and In_(2)O_(3) mixed transparent conductive BaInSnO_(x)(BITO)film deposited by filtered cathodic vacuum arc technique(FCVA)on glass substrate at room temperature were firstly reported.The BITO film with thickness of 300 nm had mainly In_(2)O_(3) polycrystalline phase,and minor polycrystalline BTO phase with(001),(011),(111),(002),(222)crystal faces which were first deposited at room temperature on amorphous glass.The transmittance was 70%–80%in the visible light region with linear refractive index of 1.94 and extinction coefficient of 0.004 at 550-nm wavelength.The basic optical properties included the real and imaginary parts,high frequency dielectric constants,the absorption coefficient,the Urbach energy,the indirect and direct band gaps,the oscillator and dispersion energies,the static refractive index and dielectric constant,the average oscillator wavelength,oscillator length strength,the linear and the third-order nonlinear optical susceptibilities,and the nonlinear refractive index were all calculated.The film was the n-type conductor with sheet resistance of 704.7Ω/□,resistivity of 0.02Ω⋅cm,mobility of 18.9 cm2/V⋅s,and carrier electron concentration of 1.6×10^(19) cm^(−3) at room temperature.The results suggested that the BITO film deposited by FCVA had potential application in transparent conductive films-based low temperature device process.
文摘Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.
基金the Program for New Century Excellent Talents in Universities, MOE, China (No. NCET-05-0764)the Tackle Key Problems on Scientific Technology Foundation of Chongqing Municipality (Nos. CSTC2005AA4006-A6 and CSTC2004AC4034)+2 种基金the Natural Science Foundation of Chongqing Municipality (No. CSTC2005BA4016)China Postdoctoral Science Foundation (No. 2005037544)the Inno-base for Graduates of Chongqing University (No. 200506Y1B0240131).
文摘Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.
文摘TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical properties of the TiOz/Au/TiO2 multilayer films can be tailored to suit different applications. The thickness and optical properties of the Au layer and the quality of the Au-dielectric interfaces are critical for the electrical and optical performance of the Au-dielectric multilayer thin films. At the thickness of 8 rim, the Au layer forms a continuous structure having the lowest resistivity and it must be thin for high transmittance. The multilayer stack can be optimized to have a sheet resistance of 6 D./sq. at a transmittance over 80% at 680 nm in wavelength. The peak transmittance shifts towards the long wavelength region when the thickness of the two TiO2 (upper and lower) layers increases. When the film thickness of the two TiO2 film is 45 nm, a high transmittance value is obtained for the entire visible light wavelength region.
基金Supported by the National Nature Science Foundation under Grant No 50871046, the National Basic Research Program of China under Grant No 2010CB631001, and the Program for Changjiang Scholars and Innovative Research Team in University.
文摘ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, photolu- minescence and electrical resistivity measurements, respectively. The results show that the UV emission is at a constant peak position in the photoluminescence spectra. Meanwhile, their electrical resistivity decreases to very low level approaching to the value of the CdO film, which can be explained by the Matthiessen composite rule for resistivity. The peculiarity of low resistivity and high transnlittance in the visible region enables these Rims suitable for optoelectronic device fabrication.
文摘In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field.
基金financially supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No. 2009AA03Z428)National Student Innovative Experiment Plan
文摘The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.
基金Project supported by the National Natural Science Foundation of China(Grant No.61764012).
文摘The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells(ADQWs)with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37<x<0.62 is discussed.The mixed phases are taken into account by our weight model of fitting.The states of excitons are obtained by a finite difference method and a variational procedure in consideration of built-in electric fields(BEFs)and the Hartree potential.The optical absorption coefficients(OACs)of exciton interstate transition are obtained by the density matrix method.The results show that Hartree potential bends the conduction and valence bands,whereas a BEF tilts the bands and the combined effect enforces electrons and holes to approach the opposite interfaces to decrease the Coulomb interaction effects between electrons and holes.Furthermore,the OACs indicate a transformation between direct and indirect excitons in zinc-blende ADQWs due to the quantum confinement effects.There are two kinds of peaks corresponding to wurtzite and zinc-blende structures respectively,and the OACs merge together under some special conditions.The computed result of exciton interband emission energy agrees well with a previous experiment.Our conclusions are helpful for further relative theoretical studies,experiments,and design of devices consisting of these quantum well structures.
基金Project supported by the National Council for Scientific and Technological Development(CNPq)
文摘Two-dimensional (2D) metamaterials are considered to be of enormous relevance to the progress of all exact sciences. Since the discovery of graphene, researchers have increasingly investigated in depth the details of electrical/optical proper- ties pertinent to other 2D metamaterials, including those relating to the silicene. In this review are included the details and comparisons of the atomic structures, energy diagram bands, substrates, charge densities, charge mobilities, conductivities, absorptions, electrical permittivities, dispersion relations of the wave vectors, and supported electromagnetic modes related to graphene and silicene. Hence, this review can help readers to acquire, recover or increase the necessary technological basis for the development of more specific studies on graphene and silicene.
基金Project supported by the Natural Science Foundation of Beijing (Grant No. 4112058)the National Natural Science Foundation of China (Grant Nos. 60906027, 60906028, 61036010, and 60636030)the Open Fund of Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education of China
文摘This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark current, resistancearea product, absorption coefficient and quantum efficiency characteristics are thoroughly examined. The superlattice is residually n-type and it becomes slightly p-type by varying beryllium-doping concentrations, which improves its electrical performances. The optical performances remain almost unaffected with relatively low p-doping levels and begin to deteriorate with increasing p-doping density. To make a compromise between the electrical and optical performances, the photodetector with a doping concentration of 3 ×10^15 cm-3 in the active region is believed to have the best overall performances.
基金supported by the National Natural Science Foundation of China(Grant Nos.61222501 and 61335004)
文摘The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film.
基金Project supported by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates, China (Grant No. 292122)the Equipment Research Foundation of China (Grant No. 373974)
文摘ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.
文摘The structure, electrical transport, and optical properties of GaSe films fabricated by means of radio-frequency (RF) magnetron sputtering in Ar were investigated. The as-sputtered GaSe films were amorphous, and their optical energy gap Eg are 1.9~2.6 eV. The effect of the synthesis conditions on the optical and electrical properties of the GaSe films has also been studied
文摘The following article has been retracted due to the fact that the authors practise fraud. The scientific community takes a very strong view on this matter, and the Advances in Materials Physics and Chemistry treats all unethical behavior seriously. This paper published in Vol. 4 No. 10 194-202, 2014 has been removed from this site. ? Title: Investigation on the Effect of Film Thickness on the Surface Morphology, Electrical and Optical Properties of E-Beam Deposited Indium Tin Oxide (ITO) Thin Film ? Authors: Golam Saklayen, Shahinul Islam, Ferdous Rahman, Abu Bakar
文摘We report the structural, optical and electrical properties of Graphene-Vanadium oxide nanoparticles (rGO/VO-NPs) nanocomposites prepared via a hydrothermal method on glass substrates. The samples have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, ultraviolet-visible spectra (Uv-Vis) (absorbance/reflectance) and electrical conductivity. Our results are revealing a remarkable effect on the morphology and structure of vanadium oxide nanoparticles. Hence, the graphene layers improved their electrical conductivity and highly influenced their optical properties. Therefore, the obtained results may lead to better performance for a large field of applications.
基金Project(50271084)supported by the National Natural Science Foundation of China
文摘Indium-tin-oxide(ITO)films were prepared on the quarts glass by sol-gel technique.Effects of different heat treatment temperatures and cooling methods on the morphological,optical and electrical properties of ITO films were measured by TG/DTA, IR,XRD,SEM,UV-VIS spectrometer and four-probe apparatus.It is found that the crystallized ITO films exhibit a polycrystalline cubic bixbyite structure.The heat treatment process has significant effects on the morphological,optical and electrical properties of ITO films.Elevating the heat treatment temperature can perfect the crystallization process of ITO films,therefore the optical and electrical properties of ITO films are improved.But the further increasing of heat treatment temperature results in the increment of ITO films’resistivity.Compared with ITO films elaborated by furnace cooling,those prepared through air cooling have following characteristics as obviously decreased crystalline size,deeply declined porosity,more compact micro-morphology,improved electrical property and slightly decreased optical transmission.
文摘The electrical conductivity of sintered Cr2O3 mixed with 2% and 5% (in molar fraction) TiO2 or CuO was investigated in the temperature range 500-900℃ in air and in At/4 vol. pct H2 atmospheres. The effect of different Mn-oxides on the electrical conductivity of Cr2O3 was also studied under the same conditions. From the conductivity measurements it is established that additions of TiO2 change the defect structure of Cr2O3 and the effect of TiO2 on the electrical conductivity is controlled by TiO2 concentration as well as temperature and O2 partial pressure of the surrounding atmosphere. The conductivity of Cr2O3 increased in air and decreased in the At/H2 atmosphere by CuO additions. The effect of CuO was discussed with possible changes in the defect concentration in Cr2O3. Mixing of Cr2O3 with different Mn-oxides at the same Mn to metal atom fraction decreased the conductivity in air and in Ar/H2 atmospheres. No clear correlation between the spinel fraction and the changes in conductivity could be found.
基金supported by the National Natural Science Foundation of China (Grant No. 10974174)the Natural Science Foundation of Zhejiang Province of China (Grant Nos. Z6100117, Z1110057, and Y4080171)
文摘Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO thin films deposited at different In2O3 target powers are investigated. IZO thin films grown at different In2O3 target sputtering powers show evident morphological variation and different grain sizes. As the In2O3 sputtering power rises, the grain size becomes larger and electrical mobility increases. The film grown with an In2O3 target power of 100 W displays the highest electrical mobility of 13.5 cm.V-1-s-1 and the lowest resistivity of 2.4× 10^-3 Ω.cm. The average optical transmittance of the IZO thin film in the visible region reaches 80% and the band gap broadens with the increase of In2O3 target power, which is attributed to the increase in carrier concentration and is in accordance with Burstein-Moss shift theory.
基金supported by the National Natural Science Foundation of China(No.11747044)the Educational Commission of Hubei Province(No.B2018169)the Natural Science Foundation of Hubei Province(No.2017CFB526)
文摘The effects of copper-vacancy on the electrical, optical and thermoelectric properties of CuInTe2 have been investigated by the first-principles calculations and semi-classical Boltzmann theory. The estimated results of copper vacancy formation energies for Cu1-xn Te2(x = 0,1/16, 1/8 and 1/4) showed it is more difficult to prepare the sample with higher copper vacancy concentration. From the calculated energy band structures with MBJ-GGA, it can be seen that they are p-type semiconductors and the energy gap values increase with the vacancy concentration increasing. The wavelength is smaller than 460 nm, and the high copper vacancy concentration(x =1/4) is helpful to the values of absorption coefficient, while above 460 nm, the lower copper vacancy concentration(x = 1/16) is able to enhance the absorption coefficient. The lower copper vacancy concentration(x = 1/16) is more favorable to improve the power factor in low or middle temperature. However, the high copper vacancy concentration(x = 1/4) is better in high temperature. These results give hints for the design of CuInTe2 as the good photovoltaic and thermoelectric materials.