The mixed brightness-integrals were defined by Li and Zhu. In this paper, we first establish two Brunn-Minkowski ine- qualities of the mixed brightness-integrals based on the Blaschke sum and Minkowski sum of convex b...The mixed brightness-integrals were defined by Li and Zhu. In this paper, we first establish two Brunn-Minkowski ine- qualities of the mixed brightness-integrals based on the Blaschke sum and Minkowski sum of convex bodies. Further, we also obtain the Beckenbach-Dresher type inequalities of the mixed bright- ness-integrals combining the harmonic Blaschke sum and the harmonic radial sum of star bodies.展开更多
In this paper,we first introduce a concept of L_p-dual Quermassintegral sum function of convex bodies and establish the polar projection Minkowski inequality and the polar projection Aleksandrov-Fenchel inequality for...In this paper,we first introduce a concept of L_p-dual Quermassintegral sum function of convex bodies and establish the polar projection Minkowski inequality and the polar projection Aleksandrov-Fenchel inequality for L_p-dual Quermassintegral sums.Moreover,by using Lutwak’s width-integral of index i,we establish the L_p-Brunn-Minkowski inequality for the polar mixed projec- tion bodies.As applications,we prove some interrelated results.展开更多
基金Supported by the National Natural Science Foundation of China(11371224)Foundation of Degree Dissertation of Master of China Three Gorges University(2013PY068)
文摘The mixed brightness-integrals were defined by Li and Zhu. In this paper, we first establish two Brunn-Minkowski ine- qualities of the mixed brightness-integrals based on the Blaschke sum and Minkowski sum of convex bodies. Further, we also obtain the Beckenbach-Dresher type inequalities of the mixed bright- ness-integrals combining the harmonic Blaschke sum and the harmonic radial sum of star bodies.
基金This work was partially supported by the National Natural Science Foundation of China (Grant No.10271071)Zhejiang Provincial Natural Science Foundation of China (Grant No.Y605065)Foundation of the Education Department of Zhejiang Province of China (Grant No.20050392)
文摘In this paper,we first introduce a concept of L_p-dual Quermassintegral sum function of convex bodies and establish the polar projection Minkowski inequality and the polar projection Aleksandrov-Fenchel inequality for L_p-dual Quermassintegral sums.Moreover,by using Lutwak’s width-integral of index i,we establish the L_p-Brunn-Minkowski inequality for the polar mixed projec- tion bodies.As applications,we prove some interrelated results.