Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's f...Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.展开更多
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
A mechanism for proving global convergence in filter-SQP (sequence of quadratic programming) method with the nonlinear complementarity problem (NCP) function is described for constrained nonlinear optimization pro...A mechanism for proving global convergence in filter-SQP (sequence of quadratic programming) method with the nonlinear complementarity problem (NCP) function is described for constrained nonlinear optimization problem.We introduce an NCP function into the filter and construct a new SQP-filter algorithm.Such methods are characterized by their use of the dominance concept of multi-objective optimization,instead of a penalty parameter whose adjustment can be problematic.We prove that the algorithm has global convergence and superlinear convergence rates under some mild conditions.展开更多
In the present work, two new, (multi-)parametric programming (mp-P)-inspired algorithms for the solutionof mixed-integer nonlinear programming (MINLP) problems are developed, with their main focus being onproces...In the present work, two new, (multi-)parametric programming (mp-P)-inspired algorithms for the solutionof mixed-integer nonlinear programming (MINLP) problems are developed, with their main focus being onprocess synthesis problems. The algorithms are developed for the special case in which the nonlinearitiesarise because of logarithmic terms, with the first one being developed for the deterministic case, and thesecond for the parametric case (p-MINLP). The key idea is to formulate and solve the square system of thefirst-order Karush-Kuhn-Tucker (KKT) conditions in an analytical way, by treating the binary variables and/or uncertain parameters as symbolic parameters. To this effect, symbolic manipulation and solution tech-niques are employed. In order to demonstrate the applicability and validity of the proposed algorithms, twoprocess synthesis case studies are examined. The corresponding solutions are then validated using state-of-the-art numerical MINLP solvers. For p-MINLP, the solution is given by an optimal solution as an explicitfunction of the uncertain parameters.展开更多
Multi-dimensional nonlinear knapsack problem is a bounded nonlinear integer programming problem that maximizes a separable nondecreasing function subject to multiple separable nondecreasing constraints. This problem i...Multi-dimensional nonlinear knapsack problem is a bounded nonlinear integer programming problem that maximizes a separable nondecreasing function subject to multiple separable nondecreasing constraints. This problem is often encountered in resource allocation, industrial planning and computer network. In this paper, a new convergent Lagrangian dual method was proposed for solving this problem. Cutting plane method was used to solve the dual problem and to compute the Lagrangian bounds of the primal problem. In order to eliminate the duality gap and thus to guarantee the convergence of the algorithm, domain cut technique was employed to remove certain integer boxes and partition the revised domain to a union of integer boxes. Extensive computational results show that the proposed method is efficient for solving large-scale multi-dimensional nonlinear knapsack problems. Our numerical results also indicate that the cutting plane method significantly outperforms the subgradient method as a dual search procedure.展开更多
A heuristic technique is developed for a nonlinear magnetohydrodynamics (MHD) Jeffery-Hamel problem with the help of the feed-forward artificial neural net- work (ANN) optimized with the genetic algorithm (GA) a...A heuristic technique is developed for a nonlinear magnetohydrodynamics (MHD) Jeffery-Hamel problem with the help of the feed-forward artificial neural net- work (ANN) optimized with the genetic algorithm (GA) and the sequential quadratic programming (SQP) method. The twodimensional (2D) MHD Jeffery-Hamel problem is transformed into a higher order boundary value problem (BVP) of ordinary differential equations (ODEs). The mathematical model of the transformed BVP is formulated with the ANN in an unsupervised manner. The training of the weights of the ANN is carried out with the evolutionary calculation based on the GA hybridized with the SQP method for the rapid local convergence. The proposed scheme is evaluated on the variants of the Jeffery-Hamel flow by varying the Reynold number, the Hartmann number, and the an- gles of the walls. A large number of simulations are performed with an extensive analysis to validate the accuracy, convergence, and effectiveness of the scheme. The comparison of the standard numerical solution and the analytic solution establishes the correctness of the proposed designed methodologies.展开更多
目的针对冷链运输中的生鲜打包及装载优化问题,提出一种允许货物以体积恒定为前提进行尺寸变化的包装装载方案,以最大化集装箱的空间利用率。方法基于上述问题,构建非线性混合整数规划模型,为了方便CPLEX或LINGO等求解器对该非线性混合...目的针对冷链运输中的生鲜打包及装载优化问题,提出一种允许货物以体积恒定为前提进行尺寸变化的包装装载方案,以最大化集装箱的空间利用率。方法基于上述问题,构建非线性混合整数规划模型,为了方便CPLEX或LINGO等求解器对该非线性混合整数规划模型进行求解,采用一种分段线性化方法,将该非线性模型进行线性化处理。由于所研究问题具有NP-hard属性,无论是CPLEX还是LINGO都无法有效求解大规模算例,因此设计一种有效结合遗传算法与深度、底部、左部方向优先装载(Deepest bottom left with fill,DBLF)的算法。结果大小规模算例实验验证结果表明,混合遗传算法能够在合理时间内获得最优解或近似最优解。结论所提出的可变尺寸包装方案有效提高了装载率,有益于客户和物流公司。展开更多
uv-decomposition method for solving a mathematical program with equilibrium constraints (MPEC) problem with linear complementarity constraints is presented. The problem is first converted into a nonlinear programmin...uv-decomposition method for solving a mathematical program with equilibrium constraints (MPEC) problem with linear complementarity constraints is presented. The problem is first converted into a nonlinear programming one. The structure of subdifferential a corresponding penalty function and results of its uv-decomposition are given. A conceptual algorithm for solving this problem with a superUnear convergence rate is then constructed in terms of the obtained results.展开更多
An NGTN method was proposed for solving large-scale sparse nonlinear programming (NLP) problems. This is a hybrid method of a truncated Newton direction and a modified negative gradient direction, which is suitable fo...An NGTN method was proposed for solving large-scale sparse nonlinear programming (NLP) problems. This is a hybrid method of a truncated Newton direction and a modified negative gradient direction, which is suitable for handling sparse data structure and pos sesses Q-quadratic convergence rate. The global convergence of this new method is proved, the convergence rate is further analysed, and the detailed implementation is discussed in this paper. Some numerical tests for solving truss optimization and large sparse problems are reported. The theoretical and numerical results show that the new method is efficient for solving large-scale sparse NLP problems.展开更多
In this paper, we propose a method for finding the best piecewise linearization of nonlinear functions. For this aim, we try to obtain the best approximation of a nonlinear function as a piecewise linear function. Our...In this paper, we propose a method for finding the best piecewise linearization of nonlinear functions. For this aim, we try to obtain the best approximation of a nonlinear function as a piecewise linear function. Our method is based on an optimization problem. The optimal solution of this optimization problem is the best piecewise linear approximation of nonlinear function. Finally, we examine our method to some examples.展开更多
We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to alloc...We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to allocate an optimal number of existing facilities to each new facility in order to satisfy their demands such that the summation of the weighted rectilinear barrier distances from new facilities to existing facilities is minimized. The proposed problem is designed as a mixed-integer nonlinear programming model. To show the efficiency of the model, a numerical example is provided. It is worth noting that the global optimal solution is obtained.展开更多
Mond-Weir type duality for control problem with support functions is investigated under generalized convexity conditions. Special cases are derived. A relationship between our results and those of nonlinear programmin...Mond-Weir type duality for control problem with support functions is investigated under generalized convexity conditions. Special cases are derived. A relationship between our results and those of nonlinear programming problem containing support functions is outlined.展开更多
In this paper, the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed, which appears in the study of contact problem in mechanics. We discuss a quadratic programming formulation to the...In this paper, the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed, which appears in the study of contact problem in mechanics. We discuss a quadratic programming formulation to the problem. The resulting problems are nonlinear programs that can be solved by a line search filter-SQP algorithm.展开更多
A multiobjective variational problem involving higher order derivatives is considered and optimality condi-tions for this problem are derived. A Mond-Weir type dual to this problem is constructed and various duality r...A multiobjective variational problem involving higher order derivatives is considered and optimality condi-tions for this problem are derived. A Mond-Weir type dual to this problem is constructed and various duality results are validated under generalized invexity. Some special cases are mentioned and it is also pointed out that our results can be considered as a dynamic generalization of the already existing results in nonlinear programming.展开更多
A control problem containing support functions in the integrand of the objective of the functional as well as in the inequality constraint function is considered. For this problem, Fritz John and Karush-Kuhn-Tucker ty...A control problem containing support functions in the integrand of the objective of the functional as well as in the inequality constraint function is considered. For this problem, Fritz John and Karush-Kuhn-Tucker type necessary optimality conditions are derived. Using Karush-Kuhn-Tucker type optimality conditions, Wolfe type dual is formulated and usual duality theorems are established under generalized convexity conditions. Special cases are generated. It is also shown that our duality results have linkage with those of nonlinear programming problems involving support functions.展开更多
基金supported by the National Natural Science Fundation of China (60374063)
文摘Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10571137,10771162)
文摘A mechanism for proving global convergence in filter-SQP (sequence of quadratic programming) method with the nonlinear complementarity problem (NCP) function is described for constrained nonlinear optimization problem.We introduce an NCP function into the filter and construct a new SQP-filter algorithm.Such methods are characterized by their use of the dominance concept of multi-objective optimization,instead of a penalty parameter whose adjustment can be problematic.We prove that the algorithm has global convergence and superlinear convergence rates under some mild conditions.
基金financial support from EPSRC grants (EP/M027856/1 EP/M028240/1)
文摘In the present work, two new, (multi-)parametric programming (mp-P)-inspired algorithms for the solutionof mixed-integer nonlinear programming (MINLP) problems are developed, with their main focus being onprocess synthesis problems. The algorithms are developed for the special case in which the nonlinearitiesarise because of logarithmic terms, with the first one being developed for the deterministic case, and thesecond for the parametric case (p-MINLP). The key idea is to formulate and solve the square system of thefirst-order Karush-Kuhn-Tucker (KKT) conditions in an analytical way, by treating the binary variables and/or uncertain parameters as symbolic parameters. To this effect, symbolic manipulation and solution tech-niques are employed. In order to demonstrate the applicability and validity of the proposed algorithms, twoprocess synthesis case studies are examined. The corresponding solutions are then validated using state-of-the-art numerical MINLP solvers. For p-MINLP, the solution is given by an optimal solution as an explicitfunction of the uncertain parameters.
文摘Multi-dimensional nonlinear knapsack problem is a bounded nonlinear integer programming problem that maximizes a separable nondecreasing function subject to multiple separable nondecreasing constraints. This problem is often encountered in resource allocation, industrial planning and computer network. In this paper, a new convergent Lagrangian dual method was proposed for solving this problem. Cutting plane method was used to solve the dual problem and to compute the Lagrangian bounds of the primal problem. In order to eliminate the duality gap and thus to guarantee the convergence of the algorithm, domain cut technique was employed to remove certain integer boxes and partition the revised domain to a union of integer boxes. Extensive computational results show that the proposed method is efficient for solving large-scale multi-dimensional nonlinear knapsack problems. Our numerical results also indicate that the cutting plane method significantly outperforms the subgradient method as a dual search procedure.
文摘A heuristic technique is developed for a nonlinear magnetohydrodynamics (MHD) Jeffery-Hamel problem with the help of the feed-forward artificial neural net- work (ANN) optimized with the genetic algorithm (GA) and the sequential quadratic programming (SQP) method. The twodimensional (2D) MHD Jeffery-Hamel problem is transformed into a higher order boundary value problem (BVP) of ordinary differential equations (ODEs). The mathematical model of the transformed BVP is formulated with the ANN in an unsupervised manner. The training of the weights of the ANN is carried out with the evolutionary calculation based on the GA hybridized with the SQP method for the rapid local convergence. The proposed scheme is evaluated on the variants of the Jeffery-Hamel flow by varying the Reynold number, the Hartmann number, and the an- gles of the walls. A large number of simulations are performed with an extensive analysis to validate the accuracy, convergence, and effectiveness of the scheme. The comparison of the standard numerical solution and the analytic solution establishes the correctness of the proposed designed methodologies.
文摘目的针对冷链运输中的生鲜打包及装载优化问题,提出一种允许货物以体积恒定为前提进行尺寸变化的包装装载方案,以最大化集装箱的空间利用率。方法基于上述问题,构建非线性混合整数规划模型,为了方便CPLEX或LINGO等求解器对该非线性混合整数规划模型进行求解,采用一种分段线性化方法,将该非线性模型进行线性化处理。由于所研究问题具有NP-hard属性,无论是CPLEX还是LINGO都无法有效求解大规模算例,因此设计一种有效结合遗传算法与深度、底部、左部方向优先装载(Deepest bottom left with fill,DBLF)的算法。结果大小规模算例实验验证结果表明,混合遗传算法能够在合理时间内获得最优解或近似最优解。结论所提出的可变尺寸包装方案有效提高了装载率,有益于客户和物流公司。
基金Project supported by the National Natural Science Foundation of China(Nos.10372063,10771026 and 10471015)
文摘uv-decomposition method for solving a mathematical program with equilibrium constraints (MPEC) problem with linear complementarity constraints is presented. The problem is first converted into a nonlinear programming one. The structure of subdifferential a corresponding penalty function and results of its uv-decomposition are given. A conceptual algorithm for solving this problem with a superUnear convergence rate is then constructed in terms of the obtained results.
基金This research was supported by Nationa Natural Science Foundation of China, LSEC of CAS in Beijingand Natural Science Foundati
文摘An NGTN method was proposed for solving large-scale sparse nonlinear programming (NLP) problems. This is a hybrid method of a truncated Newton direction and a modified negative gradient direction, which is suitable for handling sparse data structure and pos sesses Q-quadratic convergence rate. The global convergence of this new method is proved, the convergence rate is further analysed, and the detailed implementation is discussed in this paper. Some numerical tests for solving truss optimization and large sparse problems are reported. The theoretical and numerical results show that the new method is efficient for solving large-scale sparse NLP problems.
文摘In this paper, we propose a method for finding the best piecewise linearization of nonlinear functions. For this aim, we try to obtain the best approximation of a nonlinear function as a piecewise linear function. Our method is based on an optimization problem. The optimal solution of this optimization problem is the best piecewise linear approximation of nonlinear function. Finally, we examine our method to some examples.
文摘We consider a capacitated location-allocation problem in the presence of k connections on the horizontal line barrier. The objective is to locate a set of new facilities among a set of existing facilities and to allocate an optimal number of existing facilities to each new facility in order to satisfy their demands such that the summation of the weighted rectilinear barrier distances from new facilities to existing facilities is minimized. The proposed problem is designed as a mixed-integer nonlinear programming model. To show the efficiency of the model, a numerical example is provided. It is worth noting that the global optimal solution is obtained.
文摘Mond-Weir type duality for control problem with support functions is investigated under generalized convexity conditions. Special cases are derived. A relationship between our results and those of nonlinear programming problem containing support functions is outlined.
文摘In this paper, the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed, which appears in the study of contact problem in mechanics. We discuss a quadratic programming formulation to the problem. The resulting problems are nonlinear programs that can be solved by a line search filter-SQP algorithm.
文摘A multiobjective variational problem involving higher order derivatives is considered and optimality condi-tions for this problem are derived. A Mond-Weir type dual to this problem is constructed and various duality results are validated under generalized invexity. Some special cases are mentioned and it is also pointed out that our results can be considered as a dynamic generalization of the already existing results in nonlinear programming.
文摘A control problem containing support functions in the integrand of the objective of the functional as well as in the inequality constraint function is considered. For this problem, Fritz John and Karush-Kuhn-Tucker type necessary optimality conditions are derived. Using Karush-Kuhn-Tucker type optimality conditions, Wolfe type dual is formulated and usual duality theorems are established under generalized convexity conditions. Special cases are generated. It is also shown that our duality results have linkage with those of nonlinear programming problems involving support functions.