Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas...Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas,which are not applicable to natural gas with high ethane content.To fill this gap,three dual mixed refrigerant processes are proposed for simulation study of high-ethane content natural gas liquefaction.The proposed processes are optimized by a combination method of sequence optimization and genetic algorithm.Comparatively analysis is conducted to evaluate the three processes from the energetic and exergetic points of view.The results show that the power consumption of Process 3 which compressing natural gas after distillation is the lowest.For safety or other considerations,some common compositions of the mixed refrigerant may need to be removed under certain circumstances.Considering this,case studies of mixed refrigerant involving six composition combinations are carried out to investigate the effects of refrigerant selection on the process performance.展开更多
Some important diagnostic characteristics for a model’s physical background are reflected in the model’s energy transport, conversion, and cycle. Diagnosing the atmospheric energy cycle is a suitable way towards und...Some important diagnostic characteristics for a model’s physical background are reflected in the model’s energy transport, conversion, and cycle. Diagnosing the atmospheric energy cycle is a suitable way towards understanding and improving numerical models. In this study, formulations of the “Mixed Space-Time Domain”energy cycle are calculated and the roles of stationary and transient waves within the atmospheric energy cycle of the Global-Regional Assimilation and Prediction System (GRAPES) model are diagnosed and compared with the NCEP analysis data for July 2011. Contributions of the zonal-mean components of the energy cycle are investigated to explain the performance of numerical models. The results show that the GRAPES model has the capability to reproduce the main features of the global energy cycle as compared with the NCEP analysis. Zonal available potential energy (AZ) is converted into stationary eddy available potential energy (ASE) and transient eddy available potential energy (ATE), and ASE and ATE have similar values. The nonlinear conversion between the two eddy energy terms is directed from the stationary to the transient. AZ becomes larger with increased forecast lead time, reflecting an enhancement of the meridional temperature gradient, which strengthens the zonal baroclinic processes and makes the conversion from AZ to eddy potential energy larger, especially for CAT (conversion from AZ to ATE). The zonal kinetic energy (KZ) has a similar value to the sum of the stationary and transient eddy kinetic energy. Barotropic conversions are directed from eddy to zonal kinetic energy. The zonal conversion from AZ to KZ in GRAPES is around 1.5 times larger than in the NCEP analysis. The contributions of zonal energy cycle components show that transient eddy kinetic energy (KTE) is associated with the Southern Hemisphere subtropical jet and the conversion from KZ to KTE reduces in the upper tropopause near 30?S. The nonlinear barotropic conversion between stationary and transient kinetic energy terms (CKTE) is reduced predominantly by the weaker KTE.展开更多
With increasing consumption of natural gas(NG),small NG reservoirs,such as coalbed methane and oil field associated gas,have recently drawn significant attention.Owing to their special characteristics(e.g.,scattered d...With increasing consumption of natural gas(NG),small NG reservoirs,such as coalbed methane and oil field associated gas,have recently drawn significant attention.Owing to their special characteristics(e.g.,scattered distribution and small output),small-scale NG liquefiers are highly required.Similarly,the mixed refrigerant cycle(MRC)is suitable for small-scale liquefaction systems due to its moderate complexity and power consumption.In consideration of the above,this paper reviews the development of mobile miniature NG liquefiers in Technical Institute of Physics and Chemistry(TIPC),China.To effectively liquefy the scattered NG and overcome the drawbacks of existing technologies,three main improvements,i.e.,low-pressure MRC process driven by oil-lubricated screw compressor,compact cold box with the new designed heat exchangers,and standardized equipment manufacturing and integrated process technology have been made.The development pattern of"rapid cluster application and flexible liquefaction center"has been eventually proposed.The small-scale NG liquefier developed by TIPC has reached a minimum liquefaction power consumption of about 0.35 kW.h/Nm^(3).It is suitable to exploit small remote gas reserves which can also be used in boil-off gas reliquefaction and distributed peak-shaving of pipe networks.展开更多
文摘Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas,which are not applicable to natural gas with high ethane content.To fill this gap,three dual mixed refrigerant processes are proposed for simulation study of high-ethane content natural gas liquefaction.The proposed processes are optimized by a combination method of sequence optimization and genetic algorithm.Comparatively analysis is conducted to evaluate the three processes from the energetic and exergetic points of view.The results show that the power consumption of Process 3 which compressing natural gas after distillation is the lowest.For safety or other considerations,some common compositions of the mixed refrigerant may need to be removed under certain circumstances.Considering this,case studies of mixed refrigerant involving six composition combinations are carried out to investigate the effects of refrigerant selection on the process performance.
基金Supported by the National Nature Science Foundation of China(41305091)China Meteorological Administration Special Fund for Numerical Prediction(GRAPES)
文摘Some important diagnostic characteristics for a model’s physical background are reflected in the model’s energy transport, conversion, and cycle. Diagnosing the atmospheric energy cycle is a suitable way towards understanding and improving numerical models. In this study, formulations of the “Mixed Space-Time Domain”energy cycle are calculated and the roles of stationary and transient waves within the atmospheric energy cycle of the Global-Regional Assimilation and Prediction System (GRAPES) model are diagnosed and compared with the NCEP analysis data for July 2011. Contributions of the zonal-mean components of the energy cycle are investigated to explain the performance of numerical models. The results show that the GRAPES model has the capability to reproduce the main features of the global energy cycle as compared with the NCEP analysis. Zonal available potential energy (AZ) is converted into stationary eddy available potential energy (ASE) and transient eddy available potential energy (ATE), and ASE and ATE have similar values. The nonlinear conversion between the two eddy energy terms is directed from the stationary to the transient. AZ becomes larger with increased forecast lead time, reflecting an enhancement of the meridional temperature gradient, which strengthens the zonal baroclinic processes and makes the conversion from AZ to eddy potential energy larger, especially for CAT (conversion from AZ to ATE). The zonal kinetic energy (KZ) has a similar value to the sum of the stationary and transient eddy kinetic energy. Barotropic conversions are directed from eddy to zonal kinetic energy. The zonal conversion from AZ to KZ in GRAPES is around 1.5 times larger than in the NCEP analysis. The contributions of zonal energy cycle components show that transient eddy kinetic energy (KTE) is associated with the Southern Hemisphere subtropical jet and the conversion from KZ to KTE reduces in the upper tropopause near 30?S. The nonlinear barotropic conversion between stationary and transient kinetic energy terms (CKTE) is reduced predominantly by the weaker KTE.
基金the National Natural Sciences Foundation of China(Grant Nos.51625603 and 51876215)the International Partnership Program of the Chinese Academy of Sciences(Grant No.GJHZ1876).
文摘With increasing consumption of natural gas(NG),small NG reservoirs,such as coalbed methane and oil field associated gas,have recently drawn significant attention.Owing to their special characteristics(e.g.,scattered distribution and small output),small-scale NG liquefiers are highly required.Similarly,the mixed refrigerant cycle(MRC)is suitable for small-scale liquefaction systems due to its moderate complexity and power consumption.In consideration of the above,this paper reviews the development of mobile miniature NG liquefiers in Technical Institute of Physics and Chemistry(TIPC),China.To effectively liquefy the scattered NG and overcome the drawbacks of existing technologies,three main improvements,i.e.,low-pressure MRC process driven by oil-lubricated screw compressor,compact cold box with the new designed heat exchangers,and standardized equipment manufacturing and integrated process technology have been made.The development pattern of"rapid cluster application and flexible liquefaction center"has been eventually proposed.The small-scale NG liquefier developed by TIPC has reached a minimum liquefaction power consumption of about 0.35 kW.h/Nm^(3).It is suitable to exploit small remote gas reserves which can also be used in boil-off gas reliquefaction and distributed peak-shaving of pipe networks.