The flows of rigid polyvinyl chloride (R-PVC) in co-rotating twin screw extruders with screw mixing elements and regular screw elements were simulated by using the finite element method. The three-dimensional, non-i...The flows of rigid polyvinyl chloride (R-PVC) in co-rotating twin screw extruders with screw mixing elements and regular screw elements were simulated by using the finite element method. The three-dimensional, non-isothermal flow fields of R-PVC in the two kinds of screw elements were calculated. The mixing performance of each type of element was studied by the particle tracking analysis method. The results show that the temperature distribution and shear-rate distribution are more uniform in the flow channel with screw mixing elements than in the flow channel with regular screw elements. Screw mixing elements provide better distributive and dispersive mixing performance but worse conveying capacity than regular screw elements.展开更多
The particle mixing was studied in a cylindrical stirred tank with elliptical dished bottom by experiments and simulations.The impeller types used were double helical ribbon(HR) + bottom HR,pitched blade ribbon + bott...The particle mixing was studied in a cylindrical stirred tank with elliptical dished bottom by experiments and simulations.The impeller types used were double helical ribbon(HR) + bottom HR,pitched blade ribbon + bottom HR,inner and outer HR + bottom HR,and pitched blade ribbon + Pfaudler + bottom HR labeled as impellers Ⅰ to Ⅳ,respectively.The quantitative correlations among the rotational speed,fill level and power consumption for impeller Ⅰ and impeller Ⅱ were obtained by experiments to validate the discrete element method(DEM) simulations.The particle mixing at different operating conditions was simulated via DEM simulations to calculate the mixing index using the Lacey method,which is a statistical method to provide a mathematical understanding of the mixing state in a binary mixture.The simulation results reveal that as the rotational speed increases,the final mixing index increases,and as the fill level increases,the final mixing index decreases.At the same operating conditions,impeller Ⅲ is the optimal combination,which provides the highest mixing index at the same revolutions.展开更多
In this paper, we study mixed finite elements for parabolic integro-differential equations, and introduce a kind of nonclassical mixed projection, its optimal L-2 and h(-s) estimates are obtained. We define semi-discr...In this paper, we study mixed finite elements for parabolic integro-differential equations, and introduce a kind of nonclassical mixed projection, its optimal L-2 and h(-s) estimates are obtained. We define semi-discrete and full-discrete mixed finite elements for the equations, and obtain the optimal L-2 error estimates.展开更多
Natural frequencies for multilayer plates are calculated by mixed finite element method. The main object of this paper is to use the mixed model for multilayer plates, analyzing each layer as an isolated plate, where ...Natural frequencies for multilayer plates are calculated by mixed finite element method. The main object of this paper is to use the mixed model for multilayer plates, analyzing each layer as an isolated plate, where the continuity of displacements is achieved by Lagrange multipliers (representing static variables). This procedure allows us to work with any model for single plate (so as to ensure the proper behavior of each layer), and the complexity of the multilayer system is avoided by ensuring the condition of displacements by the Lagrange multipliers (static variables). The plate is discretized by finite element modeling based on a primary hybrid model, where the domain is divided by quadrilateral, both for the displacement field and static variables. This mixed element for plates was implemented and several examples of vibrations have been verified successfully by the results obtained by other methods in the literature.展开更多
Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R...Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
In this article, a reduced mixed finite element (MFE) formulation based on proper orthogonal decomposition (POD) for the non-stationary conduction-convection problems is presented. Also the error estimates between...In this article, a reduced mixed finite element (MFE) formulation based on proper orthogonal decomposition (POD) for the non-stationary conduction-convection problems is presented. Also the error estimates between the reduced MFE solutions based on POD and usual MFE solutions are derived. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced MFE formulation based on POD is feasible and efficient in finding numerical solutions for the non-stationary conduction-convection problems.展开更多
Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi...Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.展开更多
The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space ...The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equatio...In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equations, establish a reduced-order MFE formulation with lower dimensions and sufficiently high accuracy, and provide the error estimates between the reduced-order POD MFE solutions and the classical MFE solutions and the implementation of algorithm for solving reduced-order MFE formulation. Some numerical examples illustrate the fact that the results of numerical computation are consis- tent with theoretical conclusions. Moreover, it is shown that the new reduced-order MFE formulation based on POD method is feasible and efficient for solving MFE formulation for parabolic equations.展开更多
In this article, a proper orthogonal decomposition (POD) method is used to study a classical splitting positive definite mixed finite element (SPDMFE) formulation for second- order hyperbolic equations. A POD redu...In this article, a proper orthogonal decomposition (POD) method is used to study a classical splitting positive definite mixed finite element (SPDMFE) formulation for second- order hyperbolic equations. A POD reduced-order SPDMFE extrapolating algorithm with lower dimensions and sufficiently high accuracy is established for second-order hyperbolic equations. The error estimates between the classical SPDMFE solutions and the reduced-order SPDMFE solutions obtained from the POD reduced-order SPDMFE extrapolating algorithm are provided. The implementation for solving the POD reduced-order SPDMFE extrapolating algorithm is given. Some numerical experiments are presented illustrating that the results of numerical computation are consistent with theoretical conclusions, thus validating that the POD reduced-order SPDMFE extrapolating algorithm is feasible and efficient for solving second-order hyperbolic equations.展开更多
A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equat...A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equations is established. The error estimates of the reduced-order CNLSMFE solutions and the implementation for the reduced-order extrapolation algorithm are provided. A numerical example is used to show that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order extrapolation algorithm is feasible and efficient for seeking numerical solutions to 2D Sobolev equations.展开更多
Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estima...Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estimates standard mixed finite spaces. Moreover, these two schemes provide the with first-order and second-order accuracy in time increment, respectively.展开更多
A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order...A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.展开更多
On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualiza...On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualization, is the coupling operator surjectivity, property that expresses in a general operator sense the Ladysenskaja-Babulka-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug- mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.
文摘The flows of rigid polyvinyl chloride (R-PVC) in co-rotating twin screw extruders with screw mixing elements and regular screw elements were simulated by using the finite element method. The three-dimensional, non-isothermal flow fields of R-PVC in the two kinds of screw elements were calculated. The mixing performance of each type of element was studied by the particle tracking analysis method. The results show that the temperature distribution and shear-rate distribution are more uniform in the flow channel with screw mixing elements than in the flow channel with regular screw elements. Screw mixing elements provide better distributive and dispersive mixing performance but worse conveying capacity than regular screw elements.
文摘The particle mixing was studied in a cylindrical stirred tank with elliptical dished bottom by experiments and simulations.The impeller types used were double helical ribbon(HR) + bottom HR,pitched blade ribbon + bottom HR,inner and outer HR + bottom HR,and pitched blade ribbon + Pfaudler + bottom HR labeled as impellers Ⅰ to Ⅳ,respectively.The quantitative correlations among the rotational speed,fill level and power consumption for impeller Ⅰ and impeller Ⅱ were obtained by experiments to validate the discrete element method(DEM) simulations.The particle mixing at different operating conditions was simulated via DEM simulations to calculate the mixing index using the Lacey method,which is a statistical method to provide a mathematical understanding of the mixing state in a binary mixture.The simulation results reveal that as the rotational speed increases,the final mixing index increases,and as the fill level increases,the final mixing index decreases.At the same operating conditions,impeller Ⅲ is the optimal combination,which provides the highest mixing index at the same revolutions.
文摘In this paper, we study mixed finite elements for parabolic integro-differential equations, and introduce a kind of nonclassical mixed projection, its optimal L-2 and h(-s) estimates are obtained. We define semi-discrete and full-discrete mixed finite elements for the equations, and obtain the optimal L-2 error estimates.
文摘Natural frequencies for multilayer plates are calculated by mixed finite element method. The main object of this paper is to use the mixed model for multilayer plates, analyzing each layer as an isolated plate, where the continuity of displacements is achieved by Lagrange multipliers (representing static variables). This procedure allows us to work with any model for single plate (so as to ensure the proper behavior of each layer), and the complexity of the multilayer system is avoided by ensuring the condition of displacements by the Lagrange multipliers (static variables). The plate is discretized by finite element modeling based on a primary hybrid model, where the domain is divided by quadrilateral, both for the displacement field and static variables. This mixed element for plates was implemented and several examples of vibrations have been verified successfully by the results obtained by other methods in the literature.
基金supported by the National Natural Science Foundation of China (Grant 11502286)
文摘Without applying any stable element techniques in the mixed methods, two simple generalized mixed element(GME) formulations were derived by combining the minimum potential energy principle and Hellinger–Reissner(H–R) variational principle. The main features of the GME formulations are that the common C0-continuous polynomial shape functions for displacement methods are used to express both displacement and stress variables, and the coefficient matrix of these formulations is not only automatically symmetric but also invertible. Hence, the numerical results of the generalized mixed methods based on the GME formulations are stable. Displacement as well as stress results can be obtained directly from the algebraic system for finite element analysis after introducing stress and displacement boundary conditions simultaneously. Numerical examples show that displacement and stress results retain the same accuracy. The results of the noncompatible generalized mixed method proposed herein are more accurate than those of the standard noncompatible displacement method. The noncompatible generalized mixed element is less sensitive to element geometric distortions.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
基金supported by the National Science Foundation of China (10871022 11061009+5 种基金 40821092)the National Basic Research Program (2010CB428403 2009CB421407 2010CB951001)Natural Science Foundation of Hebei Province (A2010001663)Chinese Universities Scientific Fund (2009-2-05)
文摘In this article, a reduced mixed finite element (MFE) formulation based on proper orthogonal decomposition (POD) for the non-stationary conduction-convection problems is presented. Also the error estimates between the reduced MFE solutions based on POD and usual MFE solutions are derived. It is shown by numerical examples that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced MFE formulation based on POD is feasible and efficient in finding numerical solutions for the non-stationary conduction-convection problems.
基金supported by National Natural Science Foundation of China(11101244,11271231)National Tackling Key Problems Program(20050200069)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
文摘The purpose of this paper is to investigate the convergence of the mixed finite element method for the initial-boundary value problem for the Sobolev equation Ut-div{aut + b1 u} = f based on the Raviart-Thomas space Vh × Wh H(div; × L2(). Optimal order estimates are obtained for the approximation of u, ut, the associated velocity p and divp respectively in L(0,T;L2()), L(0,T;L2()), L(0,T;L2()2), and L2(0, T; L2()). Quasi-optimal order estimates are obtained for the approximations of u, ut in L(0, T; L()) and p in L(0,T; L()2).
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).
基金supported by the National Science Foundation of China(11271127 and 11061009)Science Research Program of Guizhou(GJ[2011]2367)the Co-Construction Project of Beijing Municipal Commission of Education
文摘In this paper, we extend the applications of proper orthogonal decomposition (POD) method, i.e., apply POD method to a mixed finite element (MFE) formulation naturally satisfied Brezz-Babu^ka for parabolic equations, establish a reduced-order MFE formulation with lower dimensions and sufficiently high accuracy, and provide the error estimates between the reduced-order POD MFE solutions and the classical MFE solutions and the implementation of algorithm for solving reduced-order MFE formulation. Some numerical examples illustrate the fact that the results of numerical computation are consis- tent with theoretical conclusions. Moreover, it is shown that the new reduced-order MFE formulation based on POD method is feasible and efficient for solving MFE formulation for parabolic equations.
基金supported by the National Science Foundation of China(11271127,11361035)Science Research of Guizhou Education Department(QJHKYZ[2013]207)Natural Science Foundation of Inner Mongolia(2012MS0106)
文摘In this article, a proper orthogonal decomposition (POD) method is used to study a classical splitting positive definite mixed finite element (SPDMFE) formulation for second- order hyperbolic equations. A POD reduced-order SPDMFE extrapolating algorithm with lower dimensions and sufficiently high accuracy is established for second-order hyperbolic equations. The error estimates between the classical SPDMFE solutions and the reduced-order SPDMFE solutions obtained from the POD reduced-order SPDMFE extrapolating algorithm are provided. The implementation for solving the POD reduced-order SPDMFE extrapolating algorithm is given. Some numerical experiments are presented illustrating that the results of numerical computation are consistent with theoretical conclusions, thus validating that the POD reduced-order SPDMFE extrapolating algorithm is feasible and efficient for solving second-order hyperbolic equations.
基金Supported by the National Natural Science Foundation of China(11271127)Science Research Projectof Guizhou Province Education Department(QJHKYZ[2013]207)
文摘A reduced-order extrapolation algorithm based on Crank-Nicolson least-squares mixed finite element (CNLSMFE) formulation and proper orthogonal decomposition (POD) technique for two-dimensional (2D) Sobolev equations is established. The error estimates of the reduced-order CNLSMFE solutions and the implementation for the reduced-order extrapolation algorithm are provided. A numerical example is used to show that the results of numerical computations are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order extrapolation algorithm is feasible and efficient for seeking numerical solutions to 2D Sobolev equations.
基金Supported by by the National Science Foundation for Young Scholars of China(11101431)the Fundamental Research Funds for the Central Universities (12CX04082A,10CX04041A)Shandong Province Natural Science Foundation of China(ZR2010AL020)
文摘Two new convection-dominated are derived under the approximate solutions least-squares mixed finite element procedures are formulated for solving Sobolev equations. Optimal H(div;Ω)×H1(Ω) norms error estimates standard mixed finite spaces. Moreover, these two schemes provide the with first-order and second-order accuracy in time increment, respectively.
基金supported by the National Natural Science Foundation of China (No. 10601022)NSF ofInner Mongolia Autonomous Region of China (No. 200607010106)513 and Science Fund of InnerMongolia University for Distinguished Young Scholars (No. ND0702)
文摘A mixed time discontinuous space-time finite element scheme for secondorder convection diffusion problems is constructed and analyzed. Order of the equation is lowered by the mixed finite element method. The low order equation is discretized with a space-time finite element method, continuous in space but discontinuous in time. Stability, existence, uniqueness and convergence of the approximate solutions are proved. Numerical results are presented to illustrate efficiency of the proposed method.
文摘On the basis of composition duality principles, augmented three-field macrohybrid mixed variational problems and finite element schemes are analyzed. The compatibility condition adopted here, for compositional dualization, is the coupling operator surjectivity, property that expresses in a general operator sense the Ladysenskaja-Babulka-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug- mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
基金Supported by National Natural Science Foundation of China(11371331)Supported by the Natural Science Foundation of Education Department of Henan Province(14B110018)
文摘Mixed element formats of any order based on bubble functions for the stationary Stokes problem are derived in triangular and tetrahedral meshes and the convergence of these formats are proved.