To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplification...To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplifications, a sail?like constrained area is proposed, which can be used to configure di erent runner blade shapes. Then, the new method is applied to redesign and optimize the runner blade of the scale core component of the 1400?MW canned nuclear coolant pump in an established multi?optimization system compromising the Computational Fluid Dynamics(CFD) analysis, the Response Surface Methodology(RSM) and the Non?dominated Sorting Genetic Algorithm?II(NSGA?II). After the execution of the optimization procedure, three optimal samples were ultimately obtained. Then, through comparative analysis using the target runner blade, it was found that the maximum e ciency improvement reached 1.6%, while the head improvement was about 10%. Overall, a promising runner blade inverse design method which will benefit the hydraulic design of the mixed?flow pump has been proposed.展开更多
This paper treats the flow instabilities in a mixed flow pump with a vaned diffuser. Test pump has a positive slope of a head-flow performance curve at 65% flow rate of BEP (Best Efficiency Point) because of a rotatin...This paper treats the flow instabilities in a mixed flow pump with a vaned diffuser. Test pump has a positive slope of a head-flow performance curve at 65% flow rate of BEP (Best Efficiency Point) because of a rotating stall. Dynamic Particle Image Velocimetry (PIV) and pressure fluctuation measurements are used for investigating the propagation mechanism of a rotating stall. It was found that unstable performance was caused by periodical large scale abrupt backflow generated from the vaned diffuser to the outlet of impeller. Further, the relation between the static pressure at the inlet of diffuser vane and the internal flow condition was clarified. From these experimental results, in order to improve the positive slope of a head-flow performance curve, to suppress the growth of strong vortex toward the inlet of diffuser vane was proved to be a key point.展开更多
We report the recent progress of our pulsed optically pumped(POP) vapor cell rubidium clock with dispersive detection.A new compact physics package is made.A rubidium cell with a high precision buffer gases mixing r...We report the recent progress of our pulsed optically pumped(POP) vapor cell rubidium clock with dispersive detection.A new compact physics package is made.A rubidium cell with a high precision buffer gases mixing ratio is obtained,and the temperature controlling system is renovated to reduce fractional frequency sensitivity to temperature variation.The resolution of the servo control voltage is also optimized.With these improvements,a clock frequency stability of 3.53×10-13 at 1s is obtained,and a fractional frequency stability of 4.91×10-15 is achieved at an average time of τ=2000 s.展开更多
基金National Basic Research Program of China(973 Program,Grant No.2015CB057301)Research and Innovation in Science and Technology Major Project of Liaoning Province,China(Grant No.201410001)Collaborative Innovation Center of Major Machine Manufacturing in Liaoning Province,China
文摘To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplifications, a sail?like constrained area is proposed, which can be used to configure di erent runner blade shapes. Then, the new method is applied to redesign and optimize the runner blade of the scale core component of the 1400?MW canned nuclear coolant pump in an established multi?optimization system compromising the Computational Fluid Dynamics(CFD) analysis, the Response Surface Methodology(RSM) and the Non?dominated Sorting Genetic Algorithm?II(NSGA?II). After the execution of the optimization procedure, three optimal samples were ultimately obtained. Then, through comparative analysis using the target runner blade, it was found that the maximum e ciency improvement reached 1.6%, while the head improvement was about 10%. Overall, a promising runner blade inverse design method which will benefit the hydraulic design of the mixed?flow pump has been proposed.
文摘This paper treats the flow instabilities in a mixed flow pump with a vaned diffuser. Test pump has a positive slope of a head-flow performance curve at 65% flow rate of BEP (Best Efficiency Point) because of a rotating stall. Dynamic Particle Image Velocimetry (PIV) and pressure fluctuation measurements are used for investigating the propagation mechanism of a rotating stall. It was found that unstable performance was caused by periodical large scale abrupt backflow generated from the vaned diffuser to the outlet of impeller. Further, the relation between the static pressure at the inlet of diffuser vane and the internal flow condition was clarified. From these experimental results, in order to improve the positive slope of a head-flow performance curve, to suppress the growth of strong vortex toward the inlet of diffuser vane was proved to be a key point.
基金supported by the National Natural Science Foundation of China under Grant Nos.91536220 and 11504393
文摘We report the recent progress of our pulsed optically pumped(POP) vapor cell rubidium clock with dispersive detection.A new compact physics package is made.A rubidium cell with a high precision buffer gases mixing ratio is obtained,and the temperature controlling system is renovated to reduce fractional frequency sensitivity to temperature variation.The resolution of the servo control voltage is also optimized.With these improvements,a clock frequency stability of 3.53×10-13 at 1s is obtained,and a fractional frequency stability of 4.91×10-15 is achieved at an average time of τ=2000 s.