The influence of the panel position on the cooling performance of a radiant panel is analyzed.The coupled simulation of convection and radiation is set up by a computational fluid dynamics(CFD)method.The simulations...The influence of the panel position on the cooling performance of a radiant panel is analyzed.The coupled simulation of convection and radiation is set up by a computational fluid dynamics(CFD)method.The simulations with different panel positions and different indoor heat sources are used to calculate the cooling capacity of the radiant panel and the indoor thermal environment.The simulation results are in good agreement with the experimental results.The results show that when the indoor heat source temperature is low,the convective heat flux is the main influence factor of the cooling capacity and the radiant panel should be placed on the wall or on the ceiling.Otherwise,when the indoor heat source temperature is high,the radiation heat flux is the main factor and the radiant panel should be placed as near to the heat sources as possible.展开更多
This work focuses on the estimation of a duty cycle of a radiant ceiling heating system with a panel surface temperature of 35℃and a heat flux of 65 W/m2 that corresponds to a thermal comfort for sedentary occupants....This work focuses on the estimation of a duty cycle of a radiant ceiling heating system with a panel surface temperature of 35℃and a heat flux of 65 W/m2 that corresponds to a thermal comfort for sedentary occupants.The results obtained are based on the theoretical heat transfer equations that govern the radiant and natural convection heat exchange mechanisms,and experimental heat transfer coefficients available in the literature.The results of the examined radiant heating system with specific conditions showed that a duty cycle of 6.46 min alternated by 13.36 min in shutting-down position is required to assure an acceptable thermal comfort for the enclosure space occupants.In addition,the study showed that for extremely cold-temperature conditions the heating system requires a daily operating load of about 61.2%which clearly proves the efficiency of these radiant heating systems in terms of energy consumption.展开更多
基金The National Natural Science Foundation of China(No.50778094)
文摘The influence of the panel position on the cooling performance of a radiant panel is analyzed.The coupled simulation of convection and radiation is set up by a computational fluid dynamics(CFD)method.The simulations with different panel positions and different indoor heat sources are used to calculate the cooling capacity of the radiant panel and the indoor thermal environment.The simulation results are in good agreement with the experimental results.The results show that when the indoor heat source temperature is low,the convective heat flux is the main influence factor of the cooling capacity and the radiant panel should be placed on the wall or on the ceiling.Otherwise,when the indoor heat source temperature is high,the radiation heat flux is the main factor and the radiant panel should be placed as near to the heat sources as possible.
文摘This work focuses on the estimation of a duty cycle of a radiant ceiling heating system with a panel surface temperature of 35℃and a heat flux of 65 W/m2 that corresponds to a thermal comfort for sedentary occupants.The results obtained are based on the theoretical heat transfer equations that govern the radiant and natural convection heat exchange mechanisms,and experimental heat transfer coefficients available in the literature.The results of the examined radiant heating system with specific conditions showed that a duty cycle of 6.46 min alternated by 13.36 min in shutting-down position is required to assure an acceptable thermal comfort for the enclosure space occupants.In addition,the study showed that for extremely cold-temperature conditions the heating system requires a daily operating load of about 61.2%which clearly proves the efficiency of these radiant heating systems in terms of energy consumption.