This paper is concerned with the statistical modeling of the dependence structure of multivariate financial data using the copula, and the application of copula functions in VaR valuation. After the introduction of th...This paper is concerned with the statistical modeling of the dependence structure of multivariate financial data using the copula, and the application of copula functions in VaR valuation. After the introduction of the pure copula method and the maximum and minimum mixture copula method, authors present a new algorithm based on the more generalized mixture copula functions and the dependence measure, and apply the method to the portfolio of Shanghai stock composite index and Shenzhen stock component index. Comparing with the results from various methods, one can find that the mixture copula method is better than the pure Gaussian copula method and the maximum and minimum mixture copula method on different VaR level.展开更多
基金Supported by Research Projects of Humanities and Social Sciences Foundation of Ministry of Education
文摘This paper is concerned with the statistical modeling of the dependence structure of multivariate financial data using the copula, and the application of copula functions in VaR valuation. After the introduction of the pure copula method and the maximum and minimum mixture copula method, authors present a new algorithm based on the more generalized mixture copula functions and the dependence measure, and apply the method to the portfolio of Shanghai stock composite index and Shenzhen stock component index. Comparing with the results from various methods, one can find that the mixture copula method is better than the pure Gaussian copula method and the maximum and minimum mixture copula method on different VaR level.