This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and t...This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness.展开更多
Recently, a new soft-in soft-out detection algorithm based on the Markov Chain Monte Carlo (MCMC) simulation technique for Multiple-Input Multiple-Output (MIMO) systems is proposed, which is shown to perform significa...Recently, a new soft-in soft-out detection algorithm based on the Markov Chain Monte Carlo (MCMC) simulation technique for Multiple-Input Multiple-Output (MIMO) systems is proposed, which is shown to perform significantly better than their sphere decoding counterparts with relatively low complexity. However, the MCMC simulator is likely to get trapped in a fixed state when the channel SNR is high, thus lots of repetitive samples are observed and the accuracy of A Posteriori Probability (APP) estimation deteriorates. To solve this problem, an improved version of MCMC simulator, named forced-dispersed MCMC algorithm is proposed. Based on the a posteriori variance of each bit, the Gibbs sampler is monitored. Once the trapped state is detected, the sample is dispersed intentionally according to the a posteriori variance. Extensive simulation shows that, compared with the existing solution, the proposed algorithm enables the markov chain to travel more states, which ensures a near-optimal performance.展开更多
With increasing complexity of today’s electromagnetic problems, the need and opportunity to reduce domain sizes, memory requirement, computational time and possibility of errors abound for symmetric domains. With sev...With increasing complexity of today’s electromagnetic problems, the need and opportunity to reduce domain sizes, memory requirement, computational time and possibility of errors abound for symmetric domains. With several competing computational methods in recent times, methods with little or no iterations are generally preferred as they tend to consume less computer memory resources and time. This paper presents the application of simple and efficient Markov Chain Monte Carlo (MCMC) method to the Laplace’s equation in axisymmetric homogeneous domains. Two cases of axisymmetric homogeneous problems are considered. Simulation results for analytical, finite difference and MCMC solutions are reported. The results obtained from the MCMC method agree with analytical and finite difference solutions. However, the MCMC method has the advantage that its implementation is simple and fast.展开更多
The critical slip distance in rate and state model for fault friction in the study of potential earthquakes can vary wildly from micrometers to few me-ters depending on the length scale of the critically stressed faul...The critical slip distance in rate and state model for fault friction in the study of potential earthquakes can vary wildly from micrometers to few me-ters depending on the length scale of the critically stressed fault.This makes it incredibly important to construct an inversion framework that provides good estimates of the critical slip distance purely based on the observed ac-celeration at the seismogram.To eventually construct a framework that takes noisy seismogram acceleration data as input and spits out robust estimates of critical slip distance as the output,we first present the performance of the framework for synthetic data.The framework is based on Bayesian inference and Markov chain Monte Carlo methods.The synthetic data is generated by adding noise to the acceleration output of spring-slider-damper idealization of the rate and state model as the forward model.展开更多
现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MC...现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。展开更多
The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is propose...The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is proposed. In the proposed method, the Markov Chain Monte Carlo (MCMC) methods are employed for the blind Bayesian detection without channel es- timation. Meanwhile, with the exploitation of the characteristics of OFDM systems, two methods are employed to improve the convergence rate and enhance the efficiency of MCMC algorithms. One is the integration of the posterior distribution function with respect to the associated channel parameters, which is involved in the derivation of the objective distribution function; the other is the intra-symbol differential coding for the elimination of the bimodality problem resulting from the presence of unknown fading channels. Moreover, no matrix inversion is needed with the use of the orthogonality property of OFDM modulation and hence the computational load is significantly reduced. Computer simulation results show the effectiveness of the fast convergent Monte Carlo receiver.展开更多
食物网结构特征和能量流动的研究,对于维持海洋生态系统结构和功能的稳定具有重要意义,有助于深入理解海洋生态系统的复杂过程。本研究基于2019-2021年在江苏近海北部海域开展的季节性渔业资源底拖网调查数据,通过构建基于蒙特卡罗马尔...食物网结构特征和能量流动的研究,对于维持海洋生态系统结构和功能的稳定具有重要意义,有助于深入理解海洋生态系统的复杂过程。本研究基于2019-2021年在江苏近海北部海域开展的季节性渔业资源底拖网调查数据,通过构建基于蒙特卡罗马尔科夫链算法的逆线性模型(Linear Inverse Models using a Monte Carlo Method Coupled with Markov Chain, LIM-MCMC),结合生态网络分析(Ecological Network Analysis,ENA)的方法,分析了该海域生态系统状态和食物网能量流动特征,旨在为江苏近海北部海域食物网营养动力学研究提供参考依据。结果表明,该海域生态系统共包含299条能量流动路径,能量流动分布整体呈典型的金字塔结构,各功能群呼吸消耗和流入有机碎屑的能量保持同步性。通过与其他海域比较发现,江苏近海北部海域生态系统的连接指数(Connectance,C)和系统杂食指数(System Omnivory Index,SOI)分别为0.40和0.22,处于较高水平,表明该生态系统不同营养级间的营养联系较为紧密,食物网结构相对复杂,能够在较大程度上抵御外界扰动。总初级生产力/总呼吸(Total Primary Production/Total Respiration,TPP/TR)和Finn’s循环指数(Finn’s Cycling Index,FCI)分别为1.05和5.76%,表明该生态系统对能量利用效率较高。此外,约束效率(Constraint Efficiency,CE)、发展程度(Extent of Development,AC)、协同效应指数(Synergism Index,b/c)和主导间接效应(Dominance Indirect Effects,i/d)也表明该生态系统具有较高的系统发展程度、再生潜力和系统发展空间。本研究将有助于为江苏近海北部海域生态系统的修复和渔业资源的可持续利用提供理论基础,为实施基于生态系统的渔业管理提供科学依据。展开更多
When modeling a stealth aircraft with low RCS(Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters ...When modeling a stealth aircraft with low RCS(Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters are estimated via directly calculating the statistics of RCS. The Bayesian–Markov Chain Monte Carlo(Bayesian-MCMC) method is introduced herein to estimate the parameters so as to improve the fitting accuracies of fluctuation models. The parameter estimations of the lognormal and the Legendre polynomial models are reformulated in the Bayesian framework. The MCMC algorithm is then adopted to calculate the parameter estimates. Numerical results show that the distribution curves obtained by the proposed method exhibit improved consistence with the actual ones, compared with those fitted by the conventional method. The fitting accuracy could be improved by no less than 25% for both fluctuation models, which implies that the Bayesian-MCMC method might be a good candidate among the optimal parameter estimation methods for stealth aircraft RCS models.展开更多
目的比较BIC估计法与MCMC近似法两种后验概率法在贝叶斯基准剂量估计中的稳健性,并为山西省洪洞县儿童羟基代谢物可接受剂量的制定提供参考建议。方法首先介绍基于BIC估计法和MCMC近似法计算后验权重的原理,模拟研究选用Integrated Risk...目的比较BIC估计法与MCMC近似法两种后验概率法在贝叶斯基准剂量估计中的稳健性,并为山西省洪洞县儿童羟基代谢物可接受剂量的制定提供参考建议。方法首先介绍基于BIC估计法和MCMC近似法计算后验权重的原理,模拟研究选用Integrated Risk Information System数据库中不同剂量-反应数据集共30个,分析比较两种方法的优劣,并在实例研究中采用权重法进行数据整合。结果模拟研究结果显示在所研究的30个数据集中BIC估计法在BMR为0.01时有4个数据集出现BMDL预测失败的情况,在BMR为0.001时有1个数据集出现BMD预测失败的情况,以及6个数据集出现BMDL预测失败的情况。MCMC近似法计算的BMD/BMDL在每一种模型都有70%以上的数据集高于BIC估计法得到的BMD/BMDL。实例分析表明符合洪洞县儿童体内羟基代谢物剂量-反应关系的模型有linear(P=0.13,β=14.3%)、logistic(P=0.06,β=9.5%)、Weibull(P=0.14,β=10.6%)、multistage(P=0.15,β=31.1%)、Hill(P=0.21,β=34.6%)。在BMR为0.001的情况下,洪洞县儿童体内八种羟基代谢物(2-OHN、1-OHN、9-OHF、2-OHF、2-OHphe、1-OHphe、1-OHBaP、3-OHBaP)的可接受剂量(μmol/mol)依次为0.577μmol/mol、1.546μmol/mol、8.135μmol/mol、0.359μmol/mol、0.120μmol/mol、0.098μmol/mol、0.044μmol/mol、0.003μmol/mol。结论MCMC近似法在BMD估计中具有较好的稳定性和鲁棒性。展开更多
目的对医院出院病人调查表普遍存在的数据缺失进行填补与分析,以保证统计调查表的质量,为医院以及上级卫生部门了解现状,进行预策和决策提供技术支持和质量保证。方法运用SAS9.1,采用多重填补方法Markov Chain Monte Carlo(MCMC)模型对...目的对医院出院病人调查表普遍存在的数据缺失进行填补与分析,以保证统计调查表的质量,为医院以及上级卫生部门了解现状,进行预策和决策提供技术支持和质量保证。方法运用SAS9.1,采用多重填补方法Markov Chain Monte Carlo(MCMC)模型对缺失数据进行多次填补并综合分析。结果MCMC填补10次的结果最优。结论(Multiple Imputation)MI方法在解决医院出院病人调查表数据缺失时有优势,发挥空间较大,且填补效率较高。展开更多
假定模型参数的不确定性服从正态分布,根据贝叶斯原理,其最可能的分布是结合先验信息和观测信息得到的最大后验概率,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)抽样适用于此类反问题求解。鉴于随机论方法的巨大计算量,本研究利...假定模型参数的不确定性服从正态分布,根据贝叶斯原理,其最可能的分布是结合先验信息和观测信息得到的最大后验概率,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)抽样适用于此类反问题求解。鉴于随机论方法的巨大计算量,本研究利用BP(Back Propagation)神经网络及相对熵最小化来自适应加密训练数据,从而建立替代复杂正向程序的代理模型,并利用开发的不确定性分析程序对影响空泡份额的模型参数不确定性进行量化分析,选用的子通道程序为COBRA-IV。结果表明:在求得模型参数不确定性后,通过不确定性正向传递得到结果的95%置信区间对实验值的包络性较好,利用不确定性均值对模型进行标定得到的结果较基准值更接近实验值。因此,本研究建立的不确定性量化分析方法能较好适用于子通道程序的不确定性分析。展开更多
Dichotomous choice elicitation technique of contingent valuation method is broadly used in the research fields of environmental resource and recreational activity management. The binary choice type of questions are ge...Dichotomous choice elicitation technique of contingent valuation method is broadly used in the research fields of environmental resource and recreational activity management. The binary choice type of questions are generally analyzed by using Logit or Probit probability distribution models in which a common analysis procedure is to apply MLE for estimating variable parameters before calculating the respondents’ willingness to pay. In this paper, a MCMC Gibbs sampling Probit model is adopted to maintain the three advantages it has in dealing with heteroscedasticity, high dimension numerical integral and sample size restriction problems. The results revealed that the MCMC model and MLE Probit model are strikingly consistent, which suggests that the former is much simple and reliable estimation method. At the same time, the empirically based existence value estimation of coastal beach quality improvement in Dalian, China is RMB?168 per person.展开更多
Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex a...Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.展开更多
文摘This paper addresses the issues of channel estimation in a Multiple-Input/Multiple-Output (MIMO) system. Markov Chain Monte Carlo (MCMC) method is employed to jointly estimate the Channel State Information (CSI) and the transmitted signals. The deduced algorithms can work well under circumstances of low Signal-to-Noise Ratio (SNR). Simulation results are presented to demonstrate their effectiveness.
文摘Recently, a new soft-in soft-out detection algorithm based on the Markov Chain Monte Carlo (MCMC) simulation technique for Multiple-Input Multiple-Output (MIMO) systems is proposed, which is shown to perform significantly better than their sphere decoding counterparts with relatively low complexity. However, the MCMC simulator is likely to get trapped in a fixed state when the channel SNR is high, thus lots of repetitive samples are observed and the accuracy of A Posteriori Probability (APP) estimation deteriorates. To solve this problem, an improved version of MCMC simulator, named forced-dispersed MCMC algorithm is proposed. Based on the a posteriori variance of each bit, the Gibbs sampler is monitored. Once the trapped state is detected, the sample is dispersed intentionally according to the a posteriori variance. Extensive simulation shows that, compared with the existing solution, the proposed algorithm enables the markov chain to travel more states, which ensures a near-optimal performance.
文摘With increasing complexity of today’s electromagnetic problems, the need and opportunity to reduce domain sizes, memory requirement, computational time and possibility of errors abound for symmetric domains. With several competing computational methods in recent times, methods with little or no iterations are generally preferred as they tend to consume less computer memory resources and time. This paper presents the application of simple and efficient Markov Chain Monte Carlo (MCMC) method to the Laplace’s equation in axisymmetric homogeneous domains. Two cases of axisymmetric homogeneous problems are considered. Simulation results for analytical, finite difference and MCMC solutions are reported. The results obtained from the MCMC method agree with analytical and finite difference solutions. However, the MCMC method has the advantage that its implementation is simple and fast.
文摘The critical slip distance in rate and state model for fault friction in the study of potential earthquakes can vary wildly from micrometers to few me-ters depending on the length scale of the critically stressed fault.This makes it incredibly important to construct an inversion framework that provides good estimates of the critical slip distance purely based on the observed ac-celeration at the seismogram.To eventually construct a framework that takes noisy seismogram acceleration data as input and spits out robust estimates of critical slip distance as the output,we first present the performance of the framework for synthetic data.The framework is based on Bayesian inference and Markov chain Monte Carlo methods.The synthetic data is generated by adding noise to the acceleration output of spring-slider-damper idealization of the rate and state model as the forward model.
文摘现有安全稳定控制系统(简称稳控系统)的可靠性评估方法本质上属于静态建模,由于未能体现系统内各装置老化和检修等动态过程,在一定程度上影响了评估结果的准确性。为此,文中提出一种基于马尔可夫链蒙特卡洛(Markov chain Monte Carlo,MCMC)的稳控系统动态可靠性评估方法。首先针对失效过程,构建四状态非齐次马尔可夫模型来模拟装置老化过程,并给出各状态评判方法;其次针对修复过程,分析不同检修策略对装置状态转移的影响以体现状态检修的差异性;最后考虑稳控装置状态转移过程的时序或条件相关性,对稳控系统可靠性进行动态建模。以实际稳控系统为例,仿真对比不同检修策略下的可靠性,并对模型参数进行灵敏度分析。评估结果表明,该方法可以求解稳控系统的时变可用度,用于指导稳控装置现场合理检修。
基金Partially supported by the National Natural Science Foundation of China (No.60172028).
文摘The paper investigates the problem of the design of an optimal Orthogonal Fre- quency Division Multiplexing (OFDM) receiver against unknown frequency selective fading. A fast convergent Monte Carlo receiver is proposed. In the proposed method, the Markov Chain Monte Carlo (MCMC) methods are employed for the blind Bayesian detection without channel es- timation. Meanwhile, with the exploitation of the characteristics of OFDM systems, two methods are employed to improve the convergence rate and enhance the efficiency of MCMC algorithms. One is the integration of the posterior distribution function with respect to the associated channel parameters, which is involved in the derivation of the objective distribution function; the other is the intra-symbol differential coding for the elimination of the bimodality problem resulting from the presence of unknown fading channels. Moreover, no matrix inversion is needed with the use of the orthogonality property of OFDM modulation and hence the computational load is significantly reduced. Computer simulation results show the effectiveness of the fast convergent Monte Carlo receiver.
文摘食物网结构特征和能量流动的研究,对于维持海洋生态系统结构和功能的稳定具有重要意义,有助于深入理解海洋生态系统的复杂过程。本研究基于2019-2021年在江苏近海北部海域开展的季节性渔业资源底拖网调查数据,通过构建基于蒙特卡罗马尔科夫链算法的逆线性模型(Linear Inverse Models using a Monte Carlo Method Coupled with Markov Chain, LIM-MCMC),结合生态网络分析(Ecological Network Analysis,ENA)的方法,分析了该海域生态系统状态和食物网能量流动特征,旨在为江苏近海北部海域食物网营养动力学研究提供参考依据。结果表明,该海域生态系统共包含299条能量流动路径,能量流动分布整体呈典型的金字塔结构,各功能群呼吸消耗和流入有机碎屑的能量保持同步性。通过与其他海域比较发现,江苏近海北部海域生态系统的连接指数(Connectance,C)和系统杂食指数(System Omnivory Index,SOI)分别为0.40和0.22,处于较高水平,表明该生态系统不同营养级间的营养联系较为紧密,食物网结构相对复杂,能够在较大程度上抵御外界扰动。总初级生产力/总呼吸(Total Primary Production/Total Respiration,TPP/TR)和Finn’s循环指数(Finn’s Cycling Index,FCI)分别为1.05和5.76%,表明该生态系统对能量利用效率较高。此外,约束效率(Constraint Efficiency,CE)、发展程度(Extent of Development,AC)、协同效应指数(Synergism Index,b/c)和主导间接效应(Dominance Indirect Effects,i/d)也表明该生态系统具有较高的系统发展程度、再生潜力和系统发展空间。本研究将有助于为江苏近海北部海域生态系统的修复和渔业资源的可持续利用提供理论基础,为实施基于生态系统的渔业管理提供科学依据。
基金Project supported by the National Natural Science Foundation of China(Grant No.61101173)the National Basic Research Program of China(Grant No.613206)+1 种基金the National High Technology Research and Development Program of China(Grant No.2012AA01A308)the State Scholarship Fund by the China Scholarship Council(CSC),and the Oversea Academic Training Funds,and University of Electronic Science and Technology of China(UESTC)
文摘When modeling a stealth aircraft with low RCS(Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters are estimated via directly calculating the statistics of RCS. The Bayesian–Markov Chain Monte Carlo(Bayesian-MCMC) method is introduced herein to estimate the parameters so as to improve the fitting accuracies of fluctuation models. The parameter estimations of the lognormal and the Legendre polynomial models are reformulated in the Bayesian framework. The MCMC algorithm is then adopted to calculate the parameter estimates. Numerical results show that the distribution curves obtained by the proposed method exhibit improved consistence with the actual ones, compared with those fitted by the conventional method. The fitting accuracy could be improved by no less than 25% for both fluctuation models, which implies that the Bayesian-MCMC method might be a good candidate among the optimal parameter estimation methods for stealth aircraft RCS models.
文摘目的比较BIC估计法与MCMC近似法两种后验概率法在贝叶斯基准剂量估计中的稳健性,并为山西省洪洞县儿童羟基代谢物可接受剂量的制定提供参考建议。方法首先介绍基于BIC估计法和MCMC近似法计算后验权重的原理,模拟研究选用Integrated Risk Information System数据库中不同剂量-反应数据集共30个,分析比较两种方法的优劣,并在实例研究中采用权重法进行数据整合。结果模拟研究结果显示在所研究的30个数据集中BIC估计法在BMR为0.01时有4个数据集出现BMDL预测失败的情况,在BMR为0.001时有1个数据集出现BMD预测失败的情况,以及6个数据集出现BMDL预测失败的情况。MCMC近似法计算的BMD/BMDL在每一种模型都有70%以上的数据集高于BIC估计法得到的BMD/BMDL。实例分析表明符合洪洞县儿童体内羟基代谢物剂量-反应关系的模型有linear(P=0.13,β=14.3%)、logistic(P=0.06,β=9.5%)、Weibull(P=0.14,β=10.6%)、multistage(P=0.15,β=31.1%)、Hill(P=0.21,β=34.6%)。在BMR为0.001的情况下,洪洞县儿童体内八种羟基代谢物(2-OHN、1-OHN、9-OHF、2-OHF、2-OHphe、1-OHphe、1-OHBaP、3-OHBaP)的可接受剂量(μmol/mol)依次为0.577μmol/mol、1.546μmol/mol、8.135μmol/mol、0.359μmol/mol、0.120μmol/mol、0.098μmol/mol、0.044μmol/mol、0.003μmol/mol。结论MCMC近似法在BMD估计中具有较好的稳定性和鲁棒性。
文摘目的对医院出院病人调查表普遍存在的数据缺失进行填补与分析,以保证统计调查表的质量,为医院以及上级卫生部门了解现状,进行预策和决策提供技术支持和质量保证。方法运用SAS9.1,采用多重填补方法Markov Chain Monte Carlo(MCMC)模型对缺失数据进行多次填补并综合分析。结果MCMC填补10次的结果最优。结论(Multiple Imputation)MI方法在解决医院出院病人调查表数据缺失时有优势,发挥空间较大,且填补效率较高。
文摘假定模型参数的不确定性服从正态分布,根据贝叶斯原理,其最可能的分布是结合先验信息和观测信息得到的最大后验概率,马尔科夫链蒙特卡罗(Markov Chain Monte Carlo,MCMC)抽样适用于此类反问题求解。鉴于随机论方法的巨大计算量,本研究利用BP(Back Propagation)神经网络及相对熵最小化来自适应加密训练数据,从而建立替代复杂正向程序的代理模型,并利用开发的不确定性分析程序对影响空泡份额的模型参数不确定性进行量化分析,选用的子通道程序为COBRA-IV。结果表明:在求得模型参数不确定性后,通过不确定性正向传递得到结果的95%置信区间对实验值的包络性较好,利用不确定性均值对模型进行标定得到的结果较基准值更接近实验值。因此,本研究建立的不确定性量化分析方法能较好适用于子通道程序的不确定性分析。
文摘Dichotomous choice elicitation technique of contingent valuation method is broadly used in the research fields of environmental resource and recreational activity management. The binary choice type of questions are generally analyzed by using Logit or Probit probability distribution models in which a common analysis procedure is to apply MLE for estimating variable parameters before calculating the respondents’ willingness to pay. In this paper, a MCMC Gibbs sampling Probit model is adopted to maintain the three advantages it has in dealing with heteroscedasticity, high dimension numerical integral and sample size restriction problems. The results revealed that the MCMC model and MLE Probit model are strikingly consistent, which suggests that the former is much simple and reliable estimation method. At the same time, the empirically based existence value estimation of coastal beach quality improvement in Dalian, China is RMB?168 per person.
文摘Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.