Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,the...Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,there is an extremely unstable Mahe talus slide with a total volume of nearly160 million cubic meters,which is mainly composed of SRMCM.The study on the mechanical properties of SRMCM is of great significance for the engineering construction and safe operation.In this paper,laboratory tests and discrete element numerical tests based on three-dimensional scanning technology were conducted to study the influence of stone content,stone size,and the angle of the macropore structure on shear characteristics of SRMCM.The failure mechanism of SRMCM was discussed from a microscopic perspective.This work explains the internal mechanism of the influence of stone content,stone size,and the angle of the macropore structure on the strength of SRMCM through the microscopic level of stone rotation,force chain distribution,and crack propagation.As the macropore structure that intersects with the preset shear plane at a large angle could act as a skeleton-like support to resist the shear force,the fracture of the weak cemented surface of soil and stone in the macropore structure is an important cause of SRMCM destruction.展开更多
A number of parameters,e.g.cement content,cement type,relative density,and grain size distribution,can influence the mechanical behaviors of cemented soils.In the present study,a series of conventional triaxial compre...A number of parameters,e.g.cement content,cement type,relative density,and grain size distribution,can influence the mechanical behaviors of cemented soils.In the present study,a series of conventional triaxial compression tests were conducted on a cemented poorly graded sandegravel mixture containing 30% gravel and 70% sand in both consolidated drained and undrained conditions.Portland cement used as the cementing agent was added to the soil at 0%,1%,2%,and 3%(dry weight) of sandegravel mixture.Samples were prepared at 70% relative density and tested at confining pressures of 50 kPa,100 kPa,and150 kPa.Comparison of the results with other studies on well graded gravely sands indicated more dilation or negative pore pressure in poorly graded samples.Undrained failure envelopes determined using zero Skempton’s pore pressure coefficient (= 0) criterion were consistent with the drained ones.Energy absorption potential was higher in drained condition than undrained condition,suggesting that more energy was required to induce deformation in cemented soil under drained state.Energy absorption increased with increase in cement content under both drained and undrained conditions.展开更多
The contents of both water and rock particles are important factors affecting the mechanical strength of a soil–rock mixture(SRM)filled subgrade in the western mountainous area of China.Therefore,the purpose of this ...The contents of both water and rock particles are important factors affecting the mechanical strength of a soil–rock mixture(SRM)filled subgrade in the western mountainous area of China.Therefore,the purpose of this paper is to study the mechanisms of reconstituted landslide deposit samples with different water and rock particle contents by analysing the characteristics of shear strength,volumetric strain and‘jumping’phenomenon via large-scale direct shear tests.The results show that the influence of water content on shear strength is greater than the influence of rock particle content under a lower normal stress,and the results are reversed in the case of a higher normal stress.The effect of water content on the equivalent cohesion is bigger,especially for the sample with a high rock particle content.The friction angle of the specimen with same water content increases with the increasing rock particle content,but when the number of rock particles increases to a certain extent,there is a little effect on the friction angle.However,the friction angle decreases with increasing water content at the same rock particle content.Specimens with the same rock particle content change from dilation to compression with increasing water content.Finally,the continuous stage of the‘intense jumping’at different water content has been analysed.The‘jumping’phenomenon of samples with low water and rock particle content will first strengthen and then weaken the samples with increasing normal stress.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.41672258)the Land and Resources Science&Technology Project of Jiangsu Province(Grant No.2018045)。
文摘Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,there is an extremely unstable Mahe talus slide with a total volume of nearly160 million cubic meters,which is mainly composed of SRMCM.The study on the mechanical properties of SRMCM is of great significance for the engineering construction and safe operation.In this paper,laboratory tests and discrete element numerical tests based on three-dimensional scanning technology were conducted to study the influence of stone content,stone size,and the angle of the macropore structure on shear characteristics of SRMCM.The failure mechanism of SRMCM was discussed from a microscopic perspective.This work explains the internal mechanism of the influence of stone content,stone size,and the angle of the macropore structure on the strength of SRMCM through the microscopic level of stone rotation,force chain distribution,and crack propagation.As the macropore structure that intersects with the preset shear plane at a large angle could act as a skeleton-like support to resist the shear force,the fracture of the weak cemented surface of soil and stone in the macropore structure is an important cause of SRMCM destruction.
文摘A number of parameters,e.g.cement content,cement type,relative density,and grain size distribution,can influence the mechanical behaviors of cemented soils.In the present study,a series of conventional triaxial compression tests were conducted on a cemented poorly graded sandegravel mixture containing 30% gravel and 70% sand in both consolidated drained and undrained conditions.Portland cement used as the cementing agent was added to the soil at 0%,1%,2%,and 3%(dry weight) of sandegravel mixture.Samples were prepared at 70% relative density and tested at confining pressures of 50 kPa,100 kPa,and150 kPa.Comparison of the results with other studies on well graded gravely sands indicated more dilation or negative pore pressure in poorly graded samples.Undrained failure envelopes determined using zero Skempton’s pore pressure coefficient (= 0) criterion were consistent with the drained ones.Energy absorption potential was higher in drained condition than undrained condition,suggesting that more energy was required to induce deformation in cemented soil under drained state.Energy absorption increased with increase in cement content under both drained and undrained conditions.
基金supported by National Natural Science Foundation of China(51378072,51878064)the Special Fund for Basic Scientific Research of Central College of Chang’an University(310821162012,310821161023)National Association of public funds of China Scholarship Council(CSC 201706560021)
文摘The contents of both water and rock particles are important factors affecting the mechanical strength of a soil–rock mixture(SRM)filled subgrade in the western mountainous area of China.Therefore,the purpose of this paper is to study the mechanisms of reconstituted landslide deposit samples with different water and rock particle contents by analysing the characteristics of shear strength,volumetric strain and‘jumping’phenomenon via large-scale direct shear tests.The results show that the influence of water content on shear strength is greater than the influence of rock particle content under a lower normal stress,and the results are reversed in the case of a higher normal stress.The effect of water content on the equivalent cohesion is bigger,especially for the sample with a high rock particle content.The friction angle of the specimen with same water content increases with the increasing rock particle content,but when the number of rock particles increases to a certain extent,there is a little effect on the friction angle.However,the friction angle decreases with increasing water content at the same rock particle content.Specimens with the same rock particle content change from dilation to compression with increasing water content.Finally,the continuous stage of the‘intense jumping’at different water content has been analysed.The‘jumping’phenomenon of samples with low water and rock particle content will first strengthen and then weaken the samples with increasing normal stress.