期刊文献+
共找到5,657篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
1
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
Heuristic Expanding Disconnected Graph:A Rapid Path Planning Method for Mobile Robots
2
作者 Yong Tao Lian Duan +3 位作者 He Gao Yufan Zhang Yian Song Tianmiao Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期68-82,共15页
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th... Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality. 展开更多
关键词 Global path planning mobile robot Expanding disconnected graph Edge node OFFSET
下载PDF
A Practical Study of Intelligent Image-Based Mobile Robot for Tracking Colored Objects
3
作者 Mofadal Alymani Mohamed Esmail Karar Hazem Ibrahim Shehata 《Computers, Materials & Continua》 SCIE EI 2024年第8期2181-2197,共17页
Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile r... Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads. 展开更多
关键词 mobile robot autonomous systems fuzzy logic control real-time image processing
下载PDF
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems
4
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Design of intelligent controller for mobile robot based on fuzzy logic 被引量:3
5
作者 高鸣 宋爱国 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期62-67,共6页
In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mob... In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mobile robot to safely navigate in an indoor environment. First, the designs of two behaviors for a robot's autonomous navigation are described, including path tracking and obstacle avoidance, which emulate human driving behaviors and reduce the complexity of the robot's navigation problems in unknown environments. Secondly, the two behaviors are combined by using a finite state machine (FSM), which ensures that the robot can safely track a predefined path in an unknown indoor environment. The inputs to this controller are the readings from the sensors. The corresponding output is the desired direction of the robot. Finally, both the simulation and experimental results verify the effectiveness of the proposed method. 展开更多
关键词 mobile robot path tracking obstacle avoidance fuzzy logic finite state machine
下载PDF
Stabilization of Dynamic Systems for Multiple Omni-Directional Mobile Robots
6
作者 王朝立 谈大龙 王越超 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期35-40,共6页
This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a ro... This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective. 展开更多
关键词 omni directional mobile robot DYNAMICS COORDINATION collision avoidance STABILIZATION
下载PDF
Multi-sensor systems and information processing of mobile robot in uncertain environments
7
作者 乔凤斌 杨汝清 《Journal of Southeast University(English Edition)》 EI CAS 2004年第3期341-345,共5页
The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sens... The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sensors and a vision sensor. The PBJ- 01 adopts behavior-based reactive control architecture in which the key part is an object recognition system based on a fuzzy neural network. Simulation validates that this system can conclude the obstacle type from the sensor data, and help the robot decide whether to negotiate or to avoid obstacles. 展开更多
关键词 mobile robot behavior-based reactive control architecture neural network
下载PDF
DEVELOPMENT AND MOTION ANALYSIS OF MINIATURE WHEEL-TRACK-LEGGED MOBILE ROBOT 被引量:11
8
作者 DUAN Xingguang HUANG Qiang +2 位作者 XU Yan RAHMAN N ZHENG Change 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期24-28,共5页
A miniature wheel-track-legged mobile robot to carry out military and civilian missions in both indoor and outdoor environments is presented. Firstly, the mechanical design is discussed, which consists of four wheeled... A miniature wheel-track-legged mobile robot to carry out military and civilian missions in both indoor and outdoor environments is presented. Firstly, the mechanical design is discussed, which consists of four wheeled and four independently controlled tracked arms, embedded control system and teleoperation. Then the locomotion modes of the mobile robot and motion analysis are analyzed. The mobile robot can move using wheeled, tracked and legged modes, and it has the characteristics of posture-recovering, high mobility, small size and light weight. Finally, the effectiveness of the deve-loped mobile robot is confirmed by experiments such as posture recovering when tipped over, climb-ing stairs and traversing the high step. 展开更多
关键词 mobile robot Locomotion modes STAIR-CLIMBING Posture recovery
下载PDF
A review:On path planning strategies for navigation of mobile robot 被引量:87
9
作者 B.K. Patle Ganesh Babu L +2 位作者 Anish Pandey D.R.K. Parhi A. Jagadeesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第4期582-606,共25页
This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path plannin... This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap.The classical approaches such as cell decomposition(CD),roadmap approach(RA),artificial potential field(APF);reactive approaches such as genetic algorithm(GA),fuzzy logic(FL),neural network(NN),firefly algorithm(FA),particle swarm optimization(PSO),ant colony optimization(ACO),bacterial foraging optimization(BFO),artificial bee colony(ABC),cuckoo search(CS),shuffled frog leaping algorithm(SFLA)and other miscellaneous algorithms(OMA)are considered for study.The navigation over static and dynamic condition is analyzed(for single and multiple robot systems)and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches.It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm.Hence,reactive approaches are more popular and widely used for path planning of mobile robot.The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics. 展开更多
关键词 mobile robot NAVIGATION Path planning CLASSICAL APPROACHES Reactive APPROACHES Artificial INTELLIGENCE
下载PDF
Adaptive Trajectory Tracking Control for a Nonholonomic Mobile Robot 被引量:14
10
作者 CAO Zhengcai ZHAO Yingtao WU Qidi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期546-552,共7页
As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately... As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot. 展开更多
关键词 nonholonomic mobile robot trajectory tracking model reference adaptive
下载PDF
Robust adaptive control for a nonholonomic mobile robot with unknown parameters 被引量:9
11
作者 Jinbo WU Guohua XU Zhouping YIN 《控制理论与应用(英文版)》 EI 2009年第2期212-218,共7页
A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided b... A robust adaptive controller for a nonholonomic mobile robot with unknown kinematic and dynamic parameters is proposed. A kinematic controller whose output is the input of the relevant dynamic controller is provided by using the concept of backstepping. An adaptive algorithm is developed in the kinematic controller to approximate the unknown kinematic parameters, and a simple single-layer neural network is used to express the highly nonlinear robot dynamics in terms of the known and unknown parameters. In order to attenuate the effects of the uncertainties and disturbances on tracking performance, a sliding mode control term is added to the dynamic controller. In the deterministic design of feedback controllers for the uncertain dynamic systems, upper bounds on the norm of the uncertainties are an important clue to guarantee the stability of the closed-loop system. However, sometimes these upper bounds may not be easily obtained because of the complexity of the structure of the uncertainties. Thereby, simple adaptation laws are proposed to approximate upper bounds on the norm of the uncertainties to address this problem. The stability of the proposed control system is shown through the Lyapunov method. Lastly, a design example for a mobile robot with two actuated wheels is provided and the feasibility of the controller is demonstrated by numerical simulations. 展开更多
关键词 Nonholonomic constraints mobile robot Sliding mode control Adaptive control ROBUSTNESS Neural network
下载PDF
Ellipsoidal bounding set-membership identification approach for robust fault diagnosis with application to mobile robots 被引量:7
12
作者 Bo Zhou Kun Qian +1 位作者 Xudong Ma Xianzhong Dai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期986-995,共10页
A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model u... A robust fault diagnosis approach is developed by incorporating a set-membership identification (SMI) method. A class of systems with linear models in the form of fault related parameters is investigated, with model uncertainties and parameter variations taken into account explicitly and treated as bounded errors. An ellipsoid bounding set-membership identification algorithm is proposed to propagate bounded uncertainties rigorously and the guaranteed feasible set of faults parameters enveloping true parameter values is given. Faults arised from abrupt parameter variations can be detected and isolated on-line by consistency check between predicted and observed parameter sets obtained in the identification procedure. The proposed approach provides the improved robustness with its ability to distinguish real faults from model uncertainties, which comes with the inherent guaranteed robustness of the set-membership framework. Efforts are also made in this work to balance between conservativeness and computation complexity of the overall algorithm. Simulation results for the mobile robot with several slipping faults scenarios demonstrate the correctness of the proposed approach for faults detection and isolation (FDI). 展开更多
关键词 set-membership identification fault diagnosis fault detection and isolation (FDI) bounded error mobile robot
下载PDF
Robust Tracking Control for Self-balancing Mobile Robots Using Disturbance Observer 被引量:8
13
作者 Mou Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期458-465,共8页
In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly desi... In this paper,a robust tracking control scheme based on nonlinear disturbance observer is developed for the self-balancing mobile robot with external unknown disturbances.A desired velocity control law is firstly designed using the Lyapunov analysis method and the arctan function.To improve the tracking control performance,a nonlinear disturbance observer is developed to estimate the unknown disturbance of the self-balancing mobile robot.Using the output of the designed disturbance observer,the robust tracking control scheme is presented employing the sliding mode method for the selfbalancing mobile robot.Numerical simulation results further demonstrate the effectiveness of the proposed robust tracking control scheme for the self-balancing mobile robot subject to external unknown disturbances. 展开更多
关键词 Disturbance observer robust tracking control self-balancing mobile robot sliding mode control(SMC)
下载PDF
Improved Dijkstra Algorithm for Mobile Robot Path Planning and Obstacle Avoidance 被引量:9
14
作者 Shaher Alshammrei Sahbi Boubaker Lioua Kolsi 《Computers, Materials & Continua》 SCIE EI 2022年第9期5939-5954,共16页
Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented prac... Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm. 展开更多
关键词 mobile robot(MR) STEAM path planning obstacle avoidance improved dijkstra algorithm
下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:20
15
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
下载PDF
Analytical modeling and multi-objective optimization(MOO) of slippage for wheeled mobile robot(WMR) in rough terrain 被引量:6
16
作者 O.A.Ani 徐贺 +2 位作者 薛开 刘少刚 张振宇 《Journal of Central South University》 SCIE EI CAS 2012年第9期2458-2467,共10页
Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots... Good understanding of relationship between parameters of vehicle, terrain and interaction at the interface is required to develop effective navigation and motion control algorithms for autonomous wheeled mobile robots (AWMR) in rough terrain. A model and analysis of relationship among wheel slippage (S), rotation angle (0), sinkage (z) and wheel radius (r) are presented. It is found that wheel rotation angle, sinkage and radius have some influence on wheel slippage. A multi-objective optimization problem with slippage as utility function was formulated and solved in MATLAB. The results reveal the optimal values of wheel-terrain parameters required to achieve optimum slippage on dry sandy terrain. A method of slippage estimation for a five-wheeled mobile robot was presented through comparing the odometric measurements of the powered wheels with those of the fifth non-powered wheel. The experimental result shows that this method is feasible and can be used for online slippage estimation in a sandy terrain. 展开更多
关键词 autonomous wheeled mobile robot terramechanics TRACTION motion control soil shear failure drawbar pull
下载PDF
Design and motion analysis of reconfigurable wheel-legged mobile robot 被引量:6
17
作者 Shuo Zhang Jian-tao Yao +3 位作者 Ying-bin Wang Zi-sheng Liu Yun-dou Xu Yong-sheng Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1023-1040,共18页
An adaptive wheel-legged shape reconfigurable mobile robot,based on a scissor-like mechanism,is proposed for an obstacle detecting and surmounting robot,moving on complex terrain.The robot can dynamically adjust its o... An adaptive wheel-legged shape reconfigurable mobile robot,based on a scissor-like mechanism,is proposed for an obstacle detecting and surmounting robot,moving on complex terrain.The robot can dynamically adjust its own shape,according to the environment,realizing a transformation of wheel shape into leg shape and vice versa.Each wheel-legged mechanism has one degree of freedom,which means that only the relative motion of the inner and outer discs is needed to achieve the transformation of the shape into a wheel or a leg.First,the force analysis of the conversion process of the wheel-legged mechanism is carried out,while the relationship between the driving torque and the friction factor in the non-conversion trigger stage and in the conversion trigger stage is obtained.The results showed that the shape conversion can be better realized by increasing the friction factor of the trigger point.Next,the kinematics analysis of the robot,including climbing the obstacles,stairs and gully,is carried out.The motion of the spokes tip is obtained,in order to derive the folding ratio and the surmountable obstacle height of the wheel-legged mechanism.The parameters of the wheel-legged structure are optimized,to obtain better stability and obstacle climbing ability.Finally,a dynamic simulation model is established by ADAMS,to verify the obstacle climbing performance and gait rationality of the robot,in addition to a prototype experiment.The results showed that the surmountable obstacle height of the robot is about3.05 times the spoke radius.The robot has the stability of a traditional wheel mechanism and the obstacle surmount performance of a leg mechanism,making it more suitable for field reconnaissance and exploration missions. 展开更多
关键词 mobile robots Scissor mechanism KINEMATICS ADAMS simulation Obstacle surmounting
下载PDF
Vision-based Stabilization of Nonholonomic Mobile Robots by Integrating Sliding-mode Control and Adaptive Approach 被引量:4
18
作者 CAO Zhengcai YIN Longjie FU Yili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期21-28,共8页
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so... Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention. At present, most of the solutions of the problem do not take the robot dynamics into account in the controller design, so that these controllers are difficult to realize satisfactory control in practical application. Besides, many of the approaches suffer from the initial speed and torque jump which are not practical in the real world. Considering the kinematics and dynamics, a two-stage visual controller for solving the stabilization problem of a mobile robot is presented, applying the integration of adaptive control, sliding-mode control, and neural dynamics. In the first stage, an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory. In the second stage, adopting the sliding-mode control approach, a dynamic controller with a variable speed function used to reduce the chattering is designed, which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity. Furthermore, to handle the speed and torque jump problems, the neural dynamics model is integrated into the above mentioned controllers. The stability of the proposed control system is analyzed by using Lyapunov theory. Finally, the simulation of the control law is implemented in perturbed case, and the results show that the control scheme can solve the stabilization problem effectively. The proposed control law can solve the speed and torque jump problems, overcome external disturbances, and provide a new solution for the vision-based stabilization of the mobile robot. 展开更多
关键词 nonholonomic mobile robots vision-based stabilization sliding-mode control adaptive control neural dynamics
下载PDF
Backstepping Based Global Exponential Stabilization of a Tracked Mobile Robot with Slipping Perturbation 被引量:4
19
作者 Bo Zhou Jianda Han Xianzhong Dai 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第1期69-76,共8页
While the nonholonomic robots with no-slipping constraints are studied extensively nowadays, the slipping effect is inevitable in many practical applications and should be considered necessarily to achieve autonomous ... While the nonholonomic robots with no-slipping constraints are studied extensively nowadays, the slipping effect is inevitable in many practical applications and should be considered necessarily to achieve autonomous navigation and control purposes especially in outdoor environments. In this paper the robust point stabilization problem of a tracked mobile robot is discussed in the presence of track slipping, which can be treated as model perturbation that violates the pure nonholonomic constraints. The kinematic model of the tracked vehicle is created, in which the slipping is assumed to be a time-varying pa- rameter under certain assumptions of track-soil interaction. By transforming the original system to the special chained form of nonholonomic system, the integrator backstepping procedure with a state-scaling technique is used to construct the controller to stabilize the system at the kinematic level. The global exponential stability of the final system can be guaranteed by Lyapunov theory. Simulation results with different initial states and slipping parameters demonstrate the fast convergence, robustness and insensitivity to the initial state of the proposed method. 展开更多
关键词 tracked mobile robot nonholonomic system STABILIZATION BACKSTEPPING Lyapunov function
下载PDF
Target Tracking Algorithm Using Finite-time Convergence Smooth Second-order Sliding Mode Controller for Mobile Robots 被引量:4
20
作者 GE Lianzheng ZHAO Lijun GAO Tong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第3期414-419,共6页
Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control sy... Target tracking control for wheeled mobile robot (WMR) need resolve the problems of kinematics model and tracking algorithm.High-order sliding mode control is a valid method used in the nonlinear tracking control system,which can eliminate the chattering of sliding mode control.Currently there lacks the research of robustness and uncertain factors for high-order sliding mode control.To address the fast convergence and robustness problems of tracking target,the tracking mathematical model of WMR and the target is derived.Based on the finite-time convergence theory and second order sliding mode method,a nonlinear tracking algorithm is designed which guarantees that WMR can catch the target in finite time.At the same time an observer is applied to substitute the uncertain acceleration of the target,then a smooth nonlinear tracking algorithm is proposed.Based on Lyapunov stability theory and finite-time convergence,a finite time convergent smooth second order sliding mode controller and a target tracking algorithm are designed by using second order sliding mode method.The simulation results verified that WMR can catch up the target quickly and reduce the control discontinuity of the velocity of WMR. 展开更多
关键词 mobile robots second order sliding mode finite-time convergence OBSERVER
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部