In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of rec...In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of recovery and the overhead of maintenance, a new route maintenance mechanism in which the maintenance is confined to the vicinity of the broken link is proposed. This mechanism patches broken route through some other nodes in which only nodes near the broken link(s) may need to be substituted and the rest of nodes can be retained on the route. The broken link can be repaired without considering its relative position in the whole path, so the abihty of dealing with hnk failure is improved obviously. Simulation results show that the proposed strategy improves network performance significantly, such as in merits of control overhead and packet delay.展开更多
Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology ch...Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.展开更多
To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared....To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared.The analysis results show that every routing protocol has its own characteristics and competitive environment.No routing protocol is better than others in all aspects.Therefore,based on no free lunch theory,ant routing protocols were decomposed into three key components:route discovery,route maintenance (including route refreshing and route failure handling) and data forwarding.Moreover,component based ant routing protocol (CBAR) was proposed.For purpose of analysis,it only maintained basic ant routing process,and it was simple and efficient with a low overhead.Subsequently,different mechanisms used in every component and their effect on performance were analyzed and tested by simulations.Finally,future research strategies and trends were also summarized.展开更多
Mobile ad hoc network(MANET)is a dynamically reconfigurable wireless network with time-variable infrastructure.Given that nodes are highly mobile,MANET’s topology often changes.These changes increase the difficulty i...Mobile ad hoc network(MANET)is a dynamically reconfigurable wireless network with time-variable infrastructure.Given that nodes are highly mobile,MANET’s topology often changes.These changes increase the difficulty in finding the routes that the packets use when they are routed.This study proposes an algorithm called genetic algorithm-based location-aided routing(GALAR)to enhance the MANET routing protocol efficiency.The GALAR algorithm maintains an adaptive update of the node location information by adding the transmitting node location information to the routing packet and selecting the transmitting node to carry the packets to their destination.The GALAR was constructed based on a genetic optimization scheme that considers all contributing factors in the delivery behavior using criterion function optimization.Simulation results showed that the GALAR algorithm can make the probability of packet delivery ratio more than 99%with less network overhead.Moreover,GALAR was compared to other algorithms in terms of different network evaluation measures.The GALAR algorithm significantly outperformed the other algorithms that were used in the study.展开更多
Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the net...Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the network is considered as a birthdeath process and the space is reused for n times in the flooding process, which is named as an n-spatiai reuse birth-death model (n-SRBDM). We analyze the performance of the network under the dynamic source routing protocol (DSR) which is a famous reactive routing protocol. Some performance parameters of the route discovery are studied such as the probability distribution and the expectation of the flooding distance, the probability that a route is discovered by a query packet with a hop limit, the probability that a request packet finds a τ-time-valid route or a symmetric-valid route, and the average time needed to discover a valid route. For the route maintenance, some parameters are introduced and studied such as the average frequency of route recovery and the average time of a route to be valid. We compare the two models with spatial reuse and without spatial reuse by evaluating these parameters. It is shown that the spatial reuse model is much more effective in routing.展开更多
The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents ...The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.展开更多
The unique anywhere, anytime wireless communication support offers, tremendous potential for the next generation of applications in a Mobile Ad-hoc Network (MANET). The Quality of Service (QoS) has been the ever deman...The unique anywhere, anytime wireless communication support offers, tremendous potential for the next generation of applications in a Mobile Ad-hoc Network (MANET). The Quality of Service (QoS) has been the ever demanding task of wireless communication to satisfy the application requirements. Geographical routing employs a greedy forwarding technique to deliver the packets to the destination and to owe the communication void, it fails to render the expected level of QoS. Opportunistic routing technique effectively utilizes the advantages of broadcasting nature of the wireless medium and selects a set of forwarding candidates instead of relying on a greedy node. To improve the efficiency of QoS routing in sparse and highly dynamic network topology, this paper proposes the Void-Aware Position based Opportunistic Routing (VAPOR). The VAPOR maintains 2-hop neighbor information to take a routing decision, but it is limited to 1-hop information when the node density is high. It efficiently balances the storage overhead and communication delay due to void and it increases the network throughput even under a sparse network. To provide a certain assurance level for packet reachability, VAPOR decides the potential forwarders based on the forwarding probability that measures link stability, capacity, and connectivity factor. It adaptively favors a path that avoids frequent link failure and unreliable link usage. By limiting the propagation area of duplicate packets, VAPOR reduces wastage of network resources, and ittakes the advantage of concurrent batch forwarding to avoid further duplication and unnecessary delay.展开更多
A QoS routing protocol based on mobility prediction is proposed. The protocol selects the steadiest path based on mobility prediction and QoS requirements on bandwidth, delay, and so forth. The main properties of the ...A QoS routing protocol based on mobility prediction is proposed. The protocol selects the steadiest path based on mobility prediction and QoS requirements on bandwidth, delay, and so forth. The main properties of the protocol as follows. (1) Each node just broadcasts its own information, so the packet is very small and can get to the destination in a very short time. (2) When another path is built for the same QoS requirements, the original path has higher priority. (3) The update messages are reduced by using mobility prediction. (4) Data packets carry the information of link change using piggyback, which is helpful for forecasting the link status more accurately. (5) When source node gets Resource Reserve and reconnect packets at the same time, it selects reconnect packet over Resource Reserve packet. The results of simulation show that the protocol has good network performance with low control overload, and efficiently supports transmitting multimedia with QoS requirements in mobile ad hoc networks.展开更多
We propose an on-demand multipath routing algorithm in a mobile ad hoc network for video transmission and evaluate its real world performance in video streaming application. There have been a number of multipath routi...We propose an on-demand multipath routing algorithm in a mobile ad hoc network for video transmission and evaluate its real world performance in video streaming application. There have been a number of multipath routing protocols extended from AODV which is a well-known single path routing protocol. Multipath routing protocols indicate good performance in the reduction of route discovery latency and unnecessary routing packets in simulations. We show that the route establishment using source route lists provided by us (Hu and Johnson, 2002) can reduce the route discovery latency, select stable routes automatically, and work well for live video streaming without limitation of the hop count based approaches. We evaluate this proposed method compared with the original AODV by using eight laptop PCs and demonstrate live streaming experiments.展开更多
A wireless ad-hoc network is a self-organized wireless network without fixed or backbone infrastructure. All nodes have routing capability and use peer-to-peer packet transmission or forward packets to other node usin...A wireless ad-hoc network is a self-organized wireless network without fixed or backbone infrastructure. All nodes have routing capability and use peer-to-peer packet transmission or forward packets to other node using multi hop communication. Now days mobile ad-hoc networks are being used for different applications and traffics, so it require quality of service (QoS) support in routing protocol. In this paper, a modified QoS routing protocol using directional antenna has been proposed. High and normal priority can be assigned based on type of traffic. All the nodes in the path used by high priority flow are reserved as high priority flow for that flow and normal priority flow will avoid the paths used by high priority flows. If no disjoint paths are available, there may be two possibilities: Normal priority flows are blocked and other is, normal priority flows are allow using the coupled path with high priority flow. Blocking the normal priority flow, QoS routing protocol improves the performance of high priority flow. This concept may be use in emergency communication. Simulation results show that by assigning the priorities to flows, performance of high priority flows are improved and it will further improved by blocking the normal priority flow.展开更多
A Mobile Ad hoc NETwork (MANET) is a self-organizing, temporary, infrastructure-free, multi-hop, dynamic topology wireless network that contains collection of cooperative autonomous freely roaming mobile nodes. The no...A Mobile Ad hoc NETwork (MANET) is a self-organizing, temporary, infrastructure-free, multi-hop, dynamic topology wireless network that contains collection of cooperative autonomous freely roaming mobile nodes. The nodes communicate with each other by wireless radio links with no human intervention. Each mobile node functions as a specialized router to forward information to other mobile nodes. In order to provide efficient end-to-end communication with the network of nodes, a routing protocol is used to discover the optimal routes between the nodes. The routing protocols meant for wired networks can not be used for mobile ad hoc networks because of the mobility of nodes. Routing in ad hoc networks is nontrivial due to highly dynamic nature of the nodes. Various routing protocols have been proposed and widely evaluated for efficient routing of packets. This research paper presents an overview on classification of wide range of routing protocols for mobile ad hoc wireless networks proposed in the literature and shows the performance evaluation of the routing protocols: DSDV, AODV, FSR, LAR, OLSR, STAR and ZRP using the network simulator QualNet 4.0 to determine which protocols may perform best in large networks. To judge the merit of a routing protocol, one needs performance metrics (throughput, end-to-end delay, jitter, packet delivery ratio, routing overhead) with which to measure its suitability and performance. Our simulation experiments show that the LAR protocol achieve relatively good performance compared to other routing protocols.展开更多
Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad h...Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.展开更多
This paper presents adaptive hybrid protocols based on the declarative network and mainly discusses the principle and realization of the Bayesian-estimation based adaptive hybrid protocol in the declarative network, w...This paper presents adaptive hybrid protocols based on the declarative network and mainly discusses the principle and realization of the Bayesian-estimation based adaptive hybrid protocol in the declarative network, which is well adapted to the Mobile Ad hoc NETwork (MANET). The adaptive hybrid protocol is designed for ad hoc networks which have characteristics like self-organizing, no trusted party, flexibility, etc. The nodes that run the hybrid protocol can automatically select one routing protocol that is suitable for different network environment. The Bayesian-estimation based adaptive strategy, that improves the adaptability and stability of the protocol, succeeds in the Rapidnet, a declarative network engine. The result in the Rapidnet proves that the hybrid protocol and the adaptive strategy are feasible. The experiment on the ns-3 simulator, an emerging discrete-event network simulator, validates that this protocol performs well and reduces communication overheads.展开更多
In many traditional On Demand routing algorithms in Ad hoc wireless networks, a simple flooding mechanism is used to broadcast route request (RREQ) packets when there is a need to establish a route from a source node ...In many traditional On Demand routing algorithms in Ad hoc wireless networks, a simple flooding mechanism is used to broadcast route request (RREQ) packets when there is a need to establish a route from a source node to a destination node. The broadcast of RREQ may lead to high channel contention, high packet collisions, and thus high delay to establish the routes, especially with high density networks. Ad hoc on Demand Distance Vector Routing Protocol (AODV) is one among the most effective Reactive Routing Protocols in MANETs which use simple flooding mechanism to broadcast the RREQ. It is also used in Wireless Sensor Networks (WSN) and in Vehicular Ad hoc Networks (VANET). This paper proposes a new modified AODV routing protocol EGBB-AODV where the RREQ mechanism is using a grid based broadcast (EGBB) which reduces considerably the number of rebroadcast of RREQ packets, and hence improves the performance of the routing protocol. We developed a simulation model based on NS2 simulator to measure the performance of EGBB-AODV and compare the results to the original AODV and a position-aware improved counter-based algorithm (PCB-AODV). The simulation experiments that EGBB-AODV outperforms AODV and PCB-AODV in terms of end-to-end delay, delivery ratio and power consumption, under different traffic load, and network density conditions.展开更多
基金the National High Technology Research and Development Progamme of China(No2005AA123820)the National Natural Science Foundation of China(No60472052 and No10577007)
文摘In mobile ad hoc networks (MANETs), if a mnltihop route breaks, route maintenance is typically performed to establish a new route which causes high control overhead and long packet delay. To decrease the time of recovery and the overhead of maintenance, a new route maintenance mechanism in which the maintenance is confined to the vicinity of the broken link is proposed. This mechanism patches broken route through some other nodes in which only nodes near the broken link(s) may need to be substituted and the rest of nodes can be retained on the route. The broken link can be repaired without considering its relative position in the whole path, so the abihty of dealing with hnk failure is improved obviously. Simulation results show that the proposed strategy improves network performance significantly, such as in merits of control overhead and packet delay.
基金This project was supported by the National Natural Science Foundation of China (60172035 ,90304018) NSF of HubeiProvince (2004ABA014) and Teaching Research Project of Higher Educational Institutions of Hubei Province (20040231)
文摘Quality of service (QoS) routing and multicasting protocols in ad hoc networks are face with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. The multicast routing problem with multiple QoS constraints is discussed, which may deal with the delay, bandwidth and cost metrics, and describes a network model for researching the ad hoc networks QoS multicast routing problem. It presents a distributed QoS multicast routing protocol (DQMRP). The proof of correctness and complenty analysis of the DQMRP are also given. Simulation results show that the multicast tree optimized by DQMRP is better than other protocols and is fitter for the network situations with frequently changed status and the realtime multimedia application. It is an available approach to multicast routing decision with multiple QoS constraints.
基金Project(61225012)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProjects(61070162,71071028,70931001)supported by the National Natural Science Foundation of China+4 种基金Project(20120042130003)supported by the Specialized Research Fund of the Doctoral Program of Higher Education for the Priority Development Areas,ChinaProjects(20100042110025,20110042110024)supported by the Specialized Research Fund for the Doctoral Program of Higher Education,ChinaProject(2012)supported by the Specialized Development Fund for the Internet of Things from the Ministry of Industry and Information Technology of ChinaProject(N110204003)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(L2013001)supported by the Scientific Research Fund of Liaoning Provincial Education Department,China
文摘To deeply exploit the mechanisms of ant colony optimization (ACO) applied to develop routing in mobile ad hoe networks (MANETS),some existing representative ant colony routing protocols were analyzed and compared.The analysis results show that every routing protocol has its own characteristics and competitive environment.No routing protocol is better than others in all aspects.Therefore,based on no free lunch theory,ant routing protocols were decomposed into three key components:route discovery,route maintenance (including route refreshing and route failure handling) and data forwarding.Moreover,component based ant routing protocol (CBAR) was proposed.For purpose of analysis,it only maintained basic ant routing process,and it was simple and efficient with a low overhead.Subsequently,different mechanisms used in every component and their effect on performance were analyzed and tested by simulations.Finally,future research strategies and trends were also summarized.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
文摘Mobile ad hoc network(MANET)is a dynamically reconfigurable wireless network with time-variable infrastructure.Given that nodes are highly mobile,MANET’s topology often changes.These changes increase the difficulty in finding the routes that the packets use when they are routed.This study proposes an algorithm called genetic algorithm-based location-aided routing(GALAR)to enhance the MANET routing protocol efficiency.The GALAR algorithm maintains an adaptive update of the node location information by adding the transmitting node location information to the routing packet and selecting the transmitting node to carry the packets to their destination.The GALAR was constructed based on a genetic optimization scheme that considers all contributing factors in the delivery behavior using criterion function optimization.Simulation results showed that the GALAR algorithm can make the probability of packet delivery ratio more than 99%with less network overhead.Moreover,GALAR was compared to other algorithms in terms of different network evaluation measures.The GALAR algorithm significantly outperformed the other algorithms that were used in the study.
基金Project supported by the National Natural Science Foundation of China (Nos.10471088 and 60572126)the Science Foundation of Shanghai Municipal Commission of Education (No.06ZZ84)
文摘Mobile ad hoc networks (MANETs) have become a hot issue in the area of wireless networks for their non-infrastructure and mobile features. In this paper, a MANET is modeled so that the length of each link in the network is considered as a birthdeath process and the space is reused for n times in the flooding process, which is named as an n-spatiai reuse birth-death model (n-SRBDM). We analyze the performance of the network under the dynamic source routing protocol (DSR) which is a famous reactive routing protocol. Some performance parameters of the route discovery are studied such as the probability distribution and the expectation of the flooding distance, the probability that a route is discovered by a query packet with a hop limit, the probability that a request packet finds a τ-time-valid route or a symmetric-valid route, and the average time needed to discover a valid route. For the route maintenance, some parameters are introduced and studied such as the average frequency of route recovery and the average time of a route to be valid. We compare the two models with spatial reuse and without spatial reuse by evaluating these parameters. It is shown that the spatial reuse model is much more effective in routing.
文摘The working of a Mobile Ad hoc NETwork(MANET)relies on the supportive cooperation among the network nodes.But due to its intrinsic features,a misbehaving node can easily lead to a routing disorder.This paper presents two trust-based routing schemes,namely Trust-based Self-Detection Routing(TSDR)and Trust-based Cooperative Routing(TCOR)designed with an Ad hoc On-demand Distance Vector(AODV)protocol.The proposed work covers a wide range of security challenges,including malicious node identification and prevention,accurate trust quantification,secure trust data sharing,and trusted route maintenance.This brings a prominent solution for mitigating misbehaving nodes and establishing efficient communication in MANET.It is empirically validated based on a performance comparison with the current Evolutionary Self-Cooperative Trust(ESCT)scheme,Generalized Trust Model(GTM),and the conventional AODV protocol.The extensive simulations are conducted against three different varying network scenarios.The results affirm the improved values of eight popular performance metrics overcoming the existing routing schemes.Among the two proposed works,TCOR is more suitable for highly scalable networks;TSDR suits,however,the MANET application better with its small size.This work thus makes a significant contribution to the research community,in contrast to many previous works focusing solely on specific security aspects,and results in a trade-off in the expected values of evaluation parameters and asserts their efficiency.
文摘The unique anywhere, anytime wireless communication support offers, tremendous potential for the next generation of applications in a Mobile Ad-hoc Network (MANET). The Quality of Service (QoS) has been the ever demanding task of wireless communication to satisfy the application requirements. Geographical routing employs a greedy forwarding technique to deliver the packets to the destination and to owe the communication void, it fails to render the expected level of QoS. Opportunistic routing technique effectively utilizes the advantages of broadcasting nature of the wireless medium and selects a set of forwarding candidates instead of relying on a greedy node. To improve the efficiency of QoS routing in sparse and highly dynamic network topology, this paper proposes the Void-Aware Position based Opportunistic Routing (VAPOR). The VAPOR maintains 2-hop neighbor information to take a routing decision, but it is limited to 1-hop information when the node density is high. It efficiently balances the storage overhead and communication delay due to void and it increases the network throughput even under a sparse network. To provide a certain assurance level for packet reachability, VAPOR decides the potential forwarders based on the forwarding probability that measures link stability, capacity, and connectivity factor. It adaptively favors a path that avoids frequent link failure and unreliable link usage. By limiting the propagation area of duplicate packets, VAPOR reduces wastage of network resources, and ittakes the advantage of concurrent batch forwarding to avoid further duplication and unnecessary delay.
基金TheNationalHighTechnologyDevelopment"863"Program(No.2 0 0 1AA112051),TheNationalScienceFundforOverseasDistinguishedYoungScholars (No .6992 82 0 1)
文摘A QoS routing protocol based on mobility prediction is proposed. The protocol selects the steadiest path based on mobility prediction and QoS requirements on bandwidth, delay, and so forth. The main properties of the protocol as follows. (1) Each node just broadcasts its own information, so the packet is very small and can get to the destination in a very short time. (2) When another path is built for the same QoS requirements, the original path has higher priority. (3) The update messages are reduced by using mobility prediction. (4) Data packets carry the information of link change using piggyback, which is helpful for forecasting the link status more accurately. (5) When source node gets Resource Reserve and reconnect packets at the same time, it selects reconnect packet over Resource Reserve packet. The results of simulation show that the protocol has good network performance with low control overload, and efficiently supports transmitting multimedia with QoS requirements in mobile ad hoc networks.
文摘We propose an on-demand multipath routing algorithm in a mobile ad hoc network for video transmission and evaluate its real world performance in video streaming application. There have been a number of multipath routing protocols extended from AODV which is a well-known single path routing protocol. Multipath routing protocols indicate good performance in the reduction of route discovery latency and unnecessary routing packets in simulations. We show that the route establishment using source route lists provided by us (Hu and Johnson, 2002) can reduce the route discovery latency, select stable routes automatically, and work well for live video streaming without limitation of the hop count based approaches. We evaluate this proposed method compared with the original AODV by using eight laptop PCs and demonstrate live streaming experiments.
文摘A wireless ad-hoc network is a self-organized wireless network without fixed or backbone infrastructure. All nodes have routing capability and use peer-to-peer packet transmission or forward packets to other node using multi hop communication. Now days mobile ad-hoc networks are being used for different applications and traffics, so it require quality of service (QoS) support in routing protocol. In this paper, a modified QoS routing protocol using directional antenna has been proposed. High and normal priority can be assigned based on type of traffic. All the nodes in the path used by high priority flow are reserved as high priority flow for that flow and normal priority flow will avoid the paths used by high priority flows. If no disjoint paths are available, there may be two possibilities: Normal priority flows are blocked and other is, normal priority flows are allow using the coupled path with high priority flow. Blocking the normal priority flow, QoS routing protocol improves the performance of high priority flow. This concept may be use in emergency communication. Simulation results show that by assigning the priorities to flows, performance of high priority flows are improved and it will further improved by blocking the normal priority flow.
文摘A Mobile Ad hoc NETwork (MANET) is a self-organizing, temporary, infrastructure-free, multi-hop, dynamic topology wireless network that contains collection of cooperative autonomous freely roaming mobile nodes. The nodes communicate with each other by wireless radio links with no human intervention. Each mobile node functions as a specialized router to forward information to other mobile nodes. In order to provide efficient end-to-end communication with the network of nodes, a routing protocol is used to discover the optimal routes between the nodes. The routing protocols meant for wired networks can not be used for mobile ad hoc networks because of the mobility of nodes. Routing in ad hoc networks is nontrivial due to highly dynamic nature of the nodes. Various routing protocols have been proposed and widely evaluated for efficient routing of packets. This research paper presents an overview on classification of wide range of routing protocols for mobile ad hoc wireless networks proposed in the literature and shows the performance evaluation of the routing protocols: DSDV, AODV, FSR, LAR, OLSR, STAR and ZRP using the network simulator QualNet 4.0 to determine which protocols may perform best in large networks. To judge the merit of a routing protocol, one needs performance metrics (throughput, end-to-end delay, jitter, packet delivery ratio, routing overhead) with which to measure its suitability and performance. Our simulation experiments show that the LAR protocol achieve relatively good performance compared to other routing protocols.
文摘Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.
基金Supported by National Key Technology R&D Program of the Ministry of Science and Technology (2012BAB15B01)
文摘This paper presents adaptive hybrid protocols based on the declarative network and mainly discusses the principle and realization of the Bayesian-estimation based adaptive hybrid protocol in the declarative network, which is well adapted to the Mobile Ad hoc NETwork (MANET). The adaptive hybrid protocol is designed for ad hoc networks which have characteristics like self-organizing, no trusted party, flexibility, etc. The nodes that run the hybrid protocol can automatically select one routing protocol that is suitable for different network environment. The Bayesian-estimation based adaptive strategy, that improves the adaptability and stability of the protocol, succeeds in the Rapidnet, a declarative network engine. The result in the Rapidnet proves that the hybrid protocol and the adaptive strategy are feasible. The experiment on the ns-3 simulator, an emerging discrete-event network simulator, validates that this protocol performs well and reduces communication overheads.
文摘In many traditional On Demand routing algorithms in Ad hoc wireless networks, a simple flooding mechanism is used to broadcast route request (RREQ) packets when there is a need to establish a route from a source node to a destination node. The broadcast of RREQ may lead to high channel contention, high packet collisions, and thus high delay to establish the routes, especially with high density networks. Ad hoc on Demand Distance Vector Routing Protocol (AODV) is one among the most effective Reactive Routing Protocols in MANETs which use simple flooding mechanism to broadcast the RREQ. It is also used in Wireless Sensor Networks (WSN) and in Vehicular Ad hoc Networks (VANET). This paper proposes a new modified AODV routing protocol EGBB-AODV where the RREQ mechanism is using a grid based broadcast (EGBB) which reduces considerably the number of rebroadcast of RREQ packets, and hence improves the performance of the routing protocol. We developed a simulation model based on NS2 simulator to measure the performance of EGBB-AODV and compare the results to the original AODV and a position-aware improved counter-based algorithm (PCB-AODV). The simulation experiments that EGBB-AODV outperforms AODV and PCB-AODV in terms of end-to-end delay, delivery ratio and power consumption, under different traffic load, and network density conditions.