The year of 2014 saw the beginning of China's LTE,which marks that China has become one of the major engines for the global LTE development.China dazzled in the construction of LTE networks,subscribers,and industr...The year of 2014 saw the beginning of China's LTE,which marks that China has become one of the major engines for the global LTE development.China dazzled in the construction of LTE networks,subscribers,and industry chain.However,the policy formulated around TD-LTE also put China in predicament and brought it many challenges.With this article,we are going to put China's market for mobile broadband networks into perspective,focusing on the development of China's LTE market,challenges that encountered,and the research in this area in the years to come.Besides,in regards to the problems that already appeared,we will,from policy-making,industry-level,and technological points of view,offer our suggestions on how China should do to make this market robust.展开更多
Mobile broadband(MBB)networks are expanding rapidly to deliver higher data speeds.The fifth-generation cellular network promises enhanced-MBB with high-speed data rates,low power connectivity,and ultralow latency vide...Mobile broadband(MBB)networks are expanding rapidly to deliver higher data speeds.The fifth-generation cellular network promises enhanced-MBB with high-speed data rates,low power connectivity,and ultralow latency video streaming.However,existing cellular networks are unable to perform well due to high latency and low bandwidth,which degrades the performance of various applications.As a result,monitoring and evaluation of the performance of these network-supported services is critical.Mobile network providers optimize and monitor their network performance to ensure the highest quality of service to their end-users.This paper proposes a Bayesian model to estimate the minimum opinion score(MOS)of video streaming services for any particular cellular network.The MOS is the most commonly used metric to assess the quality of experience.The proposed Bayesian model consists of several input data,namely,round-trip time,stalling load,and bite rates.It was examined and evaluated using several test data sizes with various performance metrics.Simulation results show the proposed Bayesian network achieved higher accuracy overall test data sizes than a neural network.The proposed Bayesian network obtained a remarkable overall accuracy of 90.36%and outperformed the neural network.展开更多
To efficiently meet the increasing demands for mobile broadband, Ultra Mobile Broadband (UMB) is designed to complement 3G deployments. It is equipped with all the necessary features for optimal support of real-time a...To efficiently meet the increasing demands for mobile broadband, Ultra Mobile Broadband (UMB) is designed to complement 3G deployments. It is equipped with all the necessary features for optimal support of real-time and best-effort traffic with seamless mobility. This article overviews the UMB technology, and discusses its competitive advantages, which are fast time to market, flexible deployment options, inherently designed for real-time services and flexible IP-based network architecture. Moreover, the article analyzes key UMB design features, including Orthogonal Frequency Division Multiple Access (OFDMA), advanced antenna techniques, Reverse Link (RL) sector capacity optimization, adaptive interference management mechanisms, efficient RL control design, low-overhead signaling, fast seamless handoffs, multi-carrier support and beacons, enhanced terminal battery life, and flexible IP-based network architecture. UMB is well suited to be at the center of the future that melds broadband applications with faster, more capable mobile multimedia devices. UMB’s competitive advantages provide operators with continuous differentiation today and tomorrow.展开更多
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform...Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.展开更多
In this paper, a novel admission scheme is proposed which provides high degrees of quality of service (QoS) guarantees for multimedia traffic carried in mobile networks. The proposed scheme combines the admission cont...In this paper, a novel admission scheme is proposed which provides high degrees of quality of service (QoS) guarantees for multimedia traffic carried in mobile networks. The proposed scheme combines the admission control and bandwidth reservation to guarantee QoS requirements. It considers both local information and remote information to determine whether to accept or reject a connection. In order to embody the characteristics of the algorithms proposed in the article, two traditional algorithms of admission control are used for comparison. In the end of the paper the simulation analyses are given and the results show that the proposed algorithm can adjust the bandwidth according to the current status of networks and decrease the probability of connections forcibly dropped. The most important thing is that the algorithm is based on the multimedia communications and can guarantee the QoS of real time connections through decreasing the bandwidth of non real time connections.展开更多
A new mobile communications network architecture is proposed to solve four existing bottlenecks that restrict the rapid development of mobile communications,as well as to meet the development demands of future broadba...A new mobile communications network architecture is proposed to solve four existing bottlenecks that restrict the rapid development of mobile communications,as well as to meet the development demands of future broadband mobile communications. The architecture introduces the Information Lamp (IL),a novel device carrying out transceiver function,as the access point,besides providing light. It fulfills information interaction between the access points and radio access network through the power line (or fiber). The new system,supported by core technologies such as multi-antenna based distributed space-time signal processing and distributed radio resource management,integrates the wired and wireless networks to provide high-speed and high-quality mobile communication services.展开更多
For China’s telecom industry,2009 is destined to be an extraordinary year due to the approach of long-thirsted-for mobile 3G era,which will have significant impact on current work and lifestyles.2009 will also be a y...For China’s telecom industry,2009 is destined to be an extraordinary year due to the approach of long-thirsted-for mobile 3G era,which will have significant impact on current work and lifestyles.2009 will also be a year full of opportunities and challenges because the coming 3G era will bring limitless business opportunities and impose more challenges on Chinese telecom operators.The reshuffling of Chinese telecom markets has been brought to an end.The new China Unicom,China Mobile and China Telecom all focus their strategies on broadband mobile data services in order to achieve the objective of a smooth transforming from voice services to data services.Technologically,various 3G technologies and their evolutions become great concerns of telecom operators;while in terms of services,the key for 3G systems is their data services.As a result,high speed broadband data services see an era of rapid development.展开更多
The emergence of on-demand service provisioning by Federated Cloud Providers(FCPs)to Cloud Users(CU)has fuelled significant innovations in cloud provisioning models.Owing to the massive traffic,massive CU resource req...The emergence of on-demand service provisioning by Federated Cloud Providers(FCPs)to Cloud Users(CU)has fuelled significant innovations in cloud provisioning models.Owing to the massive traffic,massive CU resource requests are sent to FCPs,and appropriate service recommendations are sent by FCPs.Currently,the FourthGeneration(4G)-Long Term Evolution(LTE)network faces bottlenecks that affect end-user throughput and latency.Moreover,the data is exchanged among heterogeneous stakeholders,and thus trust is a prime concern.To address these limitations,the paper proposes a Blockchain(BC)-leveraged rank-based recommender scheme,FedRec,to expedite secure and trusted Cloud Service Provisioning(CSP)to the CU through the FCP at the backdrop of base 5G communication service.The scheme operates in three phases.In the first phase,a BCintegrated request-response broker model is formulated between the CU,Cloud Brokers(BR),and the FCP,where a CU service request is forwarded through the BR to different FCPs.For service requests,Anything-as-aService(XaaS)is supported by 5G-enhanced Mobile Broadband(eMBB)service.In the next phase,a weighted matching recommender model is proposed at the FCP sites based on a novel Ranking-Based Recommender(RBR)model based on the CU requests.In the final phase,based on the matching recommendations between the CU and the FCP,Smart Contracts(SC)are executed,and resource provisioning data is stored in the Interplanetary File Systems(IPFS)that expedite the block validations.The proposed scheme FedRec is compared in terms of SC evaluation and formal verification.In simulation,FedRec achieves a reduction of 27.55%in chain storage and a transaction throughput of 43.5074 Mbps at 150 blocks.For the IPFS,we have achieved a bandwidth improvement of 17.91%.In the RBR models,the maximum obtained hit ratio is 0.9314 at 200 million CU requests,showing an improvement of 1.2%in average servicing latency over non-RBR models and a maximization trade-off of QoE index of 2.7688 at the flow request 1.088 and at granted service price of USD 1.559 million to FCP for provided services.The obtained results indicate the viability of the proposed scheme against traditional approaches.展开更多
There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment ...There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.展开更多
The integration of network slicing into a Device-to-Device(D2D)network is a promising technological approach for efficiently accommodating Enhanced Mobile Broadband(eMBB)and Ultra Reliable Low Latency Communication(UR...The integration of network slicing into a Device-to-Device(D2D)network is a promising technological approach for efficiently accommodating Enhanced Mobile Broadband(eMBB)and Ultra Reliable Low Latency Communication(URLLC)services.In this work,we aim to optimize energy efficiency and resource allocation in a D2D underlay cellular network by jointly optimizing beamforming and Resource Sharing Unit(RSU)selection.The problem of our investigation involves a Mixed-Integer Nonlinear Program(MINLP).To solve the problem effectively,we utilize the concept of the Dinkelbach method,the iterative weightedℓ1-norm technique,and the principles of Difference of Convex(DC)programming.To simplify the solution,we merge these methods into a two-step process using Semi-Definite Relaxation(SDR)and Successive Convex Approximation(SCA).The integration of network slicing and the optimization of short packet transmission are the proposed strategies to enhance spectral efficiency and satisfy the demand for low-latency and high-data-rate requirement applications.The Simulation results validate that the proposed method outperforms the benchmark schemes,demonstrating higher throughput ranging from 11.79%to 28.67%for URLLC users,and 13.67%to 35.89%for eMBB users,respectively.展开更多
Predicting user states in future and rendering visual feedbacks accordingly can effectively reduce the visual experienced delay in the tactile Internet(TI). However, most works omit the fact that different parts in an...Predicting user states in future and rendering visual feedbacks accordingly can effectively reduce the visual experienced delay in the tactile Internet(TI). However, most works omit the fact that different parts in an image may have distinct prediction requirements, based on which different prediction models can be used in the predicting process, and then it can further improve predicting quality especially under resources-limited environment. In this paper, a hybrid prediction scheme is proposed for the visual feedbacks in a typical TI scenario with mixed visuo-haptic interactions, in which haptic traffic needs sufficient wireless resources to meet its stringent communication requirement, leaving less radio resources for the visual feedback. First, the minimum required number of radio resources for haptic traffic is derived based on the haptic communication requirements, and wireless resources are allocated to the haptic and visual traffics afterwards. Then, a grouping strategy is designed based on the deep neural network(DNN) to allocate different parts from an image feedback into two groups to use different prediction models, which jointly considers the prediction deviation thresholds, latency and reliability requirements, and the bit sizes of different image parts. Simulations show that, the hybrid prediction scheme can further reduce the visual experienced delay under haptic traffic requirements compared with existing strategies.展开更多
The fifth generation(5G)of wireless networks features three core use cases,namely ultra-reliable and low latency communications(URLLC),massive machine type communications(mMTC),and enhanced mobile broadband(eMBB).Thes...The fifth generation(5G)of wireless networks features three core use cases,namely ultra-reliable and low latency communications(URLLC),massive machine type communications(mMTC),and enhanced mobile broadband(eMBB).These use cases co-exist in many practical scenarios and compete for the same set of time and frequency resources,resulting in a natural trade-off in their performance.In this paper,a network supporting both URLLC and eMBB modes of operation is studied.To guarantee the ultra low latency requirement of URLLC,a dynamic resource allocation scheme indicated by a two-dimensional bitmap is proposed.This approach is capable to achieve finer granularity as well as lower false cancellation rate compared to the state-of-the-art methods.A novel power control and indication method is also proposed to dynamically provide different power control parameters to the user equipment(UE),while guaranteeing the reliability requirement of URLLC and minimizing the impact to eMBB.In addition,we devise a dynamic selection mechanism(DSM)to accommodate diverse scenarios,which is empowered with load prediction to become more intelligent.Our extensive system-level simulation results for eMBB-URLLC co-existence scenarios showcase that the perceived throughput of eMBB UEs is increased by 45.3%,while about 13.3% more UEs are enjoying URLLC services with at most 84% transmit power savings compared to the state-of-the-art methods.展开更多
文摘The year of 2014 saw the beginning of China's LTE,which marks that China has become one of the major engines for the global LTE development.China dazzled in the construction of LTE networks,subscribers,and industry chain.However,the policy formulated around TD-LTE also put China in predicament and brought it many challenges.With this article,we are going to put China's market for mobile broadband networks into perspective,focusing on the development of China's LTE market,challenges that encountered,and the research in this area in the years to come.Besides,in regards to the problems that already appeared,we will,from policy-making,industry-level,and technological points of view,offer our suggestions on how China should do to make this market robust.
基金The research leading to these results has received funding from The Research Council(TRC)of the Sultanate of Oman under the Block Funding Program with Agreement No.TRC/BFP/ASU/01/2019.
文摘Mobile broadband(MBB)networks are expanding rapidly to deliver higher data speeds.The fifth-generation cellular network promises enhanced-MBB with high-speed data rates,low power connectivity,and ultralow latency video streaming.However,existing cellular networks are unable to perform well due to high latency and low bandwidth,which degrades the performance of various applications.As a result,monitoring and evaluation of the performance of these network-supported services is critical.Mobile network providers optimize and monitor their network performance to ensure the highest quality of service to their end-users.This paper proposes a Bayesian model to estimate the minimum opinion score(MOS)of video streaming services for any particular cellular network.The MOS is the most commonly used metric to assess the quality of experience.The proposed Bayesian model consists of several input data,namely,round-trip time,stalling load,and bite rates.It was examined and evaluated using several test data sizes with various performance metrics.Simulation results show the proposed Bayesian network achieved higher accuracy overall test data sizes than a neural network.The proposed Bayesian network obtained a remarkable overall accuracy of 90.36%and outperformed the neural network.
文摘To efficiently meet the increasing demands for mobile broadband, Ultra Mobile Broadband (UMB) is designed to complement 3G deployments. It is equipped with all the necessary features for optimal support of real-time and best-effort traffic with seamless mobility. This article overviews the UMB technology, and discusses its competitive advantages, which are fast time to market, flexible deployment options, inherently designed for real-time services and flexible IP-based network architecture. Moreover, the article analyzes key UMB design features, including Orthogonal Frequency Division Multiple Access (OFDMA), advanced antenna techniques, Reverse Link (RL) sector capacity optimization, adaptive interference management mechanisms, efficient RL control design, low-overhead signaling, fast seamless handoffs, multi-carrier support and beacons, enhanced terminal battery life, and flexible IP-based network architecture. UMB is well suited to be at the center of the future that melds broadband applications with faster, more capable mobile multimedia devices. UMB’s competitive advantages provide operators with continuous differentiation today and tomorrow.
基金supported by the Natural Science Foundation of China (No.62171051)。
文摘Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.
文摘In this paper, a novel admission scheme is proposed which provides high degrees of quality of service (QoS) guarantees for multimedia traffic carried in mobile networks. The proposed scheme combines the admission control and bandwidth reservation to guarantee QoS requirements. It considers both local information and remote information to determine whether to accept or reject a connection. In order to embody the characteristics of the algorithms proposed in the article, two traditional algorithms of admission control are used for comparison. In the end of the paper the simulation analyses are given and the results show that the proposed algorithm can adjust the bandwidth according to the current status of networks and decrease the probability of connections forcibly dropped. The most important thing is that the algorithm is based on the multimedia communications and can guarantee the QoS of real time connections through decreasing the bandwidth of non real time connections.
基金the National Natural Science Foundation of China under Grants 60572090, 60472045 and 60496313, Ph.D Programs Foundation of Ministry of Education of China under Grant 20050614009.
文摘A new mobile communications network architecture is proposed to solve four existing bottlenecks that restrict the rapid development of mobile communications,as well as to meet the development demands of future broadband mobile communications. The architecture introduces the Information Lamp (IL),a novel device carrying out transceiver function,as the access point,besides providing light. It fulfills information interaction between the access points and radio access network through the power line (or fiber). The new system,supported by core technologies such as multi-antenna based distributed space-time signal processing and distributed radio resource management,integrates the wired and wireless networks to provide high-speed and high-quality mobile communication services.
文摘For China’s telecom industry,2009 is destined to be an extraordinary year due to the approach of long-thirsted-for mobile 3G era,which will have significant impact on current work and lifestyles.2009 will also be a year full of opportunities and challenges because the coming 3G era will bring limitless business opportunities and impose more challenges on Chinese telecom operators.The reshuffling of Chinese telecom markets has been brought to an end.The new China Unicom,China Mobile and China Telecom all focus their strategies on broadband mobile data services in order to achieve the objective of a smooth transforming from voice services to data services.Technologically,various 3G technologies and their evolutions become great concerns of telecom operators;while in terms of services,the key for 3G systems is their data services.As a result,high speed broadband data services see an era of rapid development.
文摘The emergence of on-demand service provisioning by Federated Cloud Providers(FCPs)to Cloud Users(CU)has fuelled significant innovations in cloud provisioning models.Owing to the massive traffic,massive CU resource requests are sent to FCPs,and appropriate service recommendations are sent by FCPs.Currently,the FourthGeneration(4G)-Long Term Evolution(LTE)network faces bottlenecks that affect end-user throughput and latency.Moreover,the data is exchanged among heterogeneous stakeholders,and thus trust is a prime concern.To address these limitations,the paper proposes a Blockchain(BC)-leveraged rank-based recommender scheme,FedRec,to expedite secure and trusted Cloud Service Provisioning(CSP)to the CU through the FCP at the backdrop of base 5G communication service.The scheme operates in three phases.In the first phase,a BCintegrated request-response broker model is formulated between the CU,Cloud Brokers(BR),and the FCP,where a CU service request is forwarded through the BR to different FCPs.For service requests,Anything-as-aService(XaaS)is supported by 5G-enhanced Mobile Broadband(eMBB)service.In the next phase,a weighted matching recommender model is proposed at the FCP sites based on a novel Ranking-Based Recommender(RBR)model based on the CU requests.In the final phase,based on the matching recommendations between the CU and the FCP,Smart Contracts(SC)are executed,and resource provisioning data is stored in the Interplanetary File Systems(IPFS)that expedite the block validations.The proposed scheme FedRec is compared in terms of SC evaluation and formal verification.In simulation,FedRec achieves a reduction of 27.55%in chain storage and a transaction throughput of 43.5074 Mbps at 150 blocks.For the IPFS,we have achieved a bandwidth improvement of 17.91%.In the RBR models,the maximum obtained hit ratio is 0.9314 at 200 million CU requests,showing an improvement of 1.2%in average servicing latency over non-RBR models and a maximization trade-off of QoE index of 2.7688 at the flow request 1.088 and at granted service price of USD 1.559 million to FCP for provided services.The obtained results indicate the viability of the proposed scheme against traditional approaches.
基金supported in part by the NSFC project under grant No.61132003the Fundamental Research Funds for the Central Universities(2013JBZ002)the Ph.D.Program Foundation of Ministry of Education of China under grant No.20120009130002
文摘There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.
文摘The integration of network slicing into a Device-to-Device(D2D)network is a promising technological approach for efficiently accommodating Enhanced Mobile Broadband(eMBB)and Ultra Reliable Low Latency Communication(URLLC)services.In this work,we aim to optimize energy efficiency and resource allocation in a D2D underlay cellular network by jointly optimizing beamforming and Resource Sharing Unit(RSU)selection.The problem of our investigation involves a Mixed-Integer Nonlinear Program(MINLP).To solve the problem effectively,we utilize the concept of the Dinkelbach method,the iterative weightedℓ1-norm technique,and the principles of Difference of Convex(DC)programming.To simplify the solution,we merge these methods into a two-step process using Semi-Definite Relaxation(SDR)and Successive Convex Approximation(SCA).The integration of network slicing and the optimization of short packet transmission are the proposed strategies to enhance spectral efficiency and satisfy the demand for low-latency and high-data-rate requirement applications.The Simulation results validate that the proposed method outperforms the benchmark schemes,demonstrating higher throughput ranging from 11.79%to 28.67%for URLLC users,and 13.67%to 35.89%for eMBB users,respectively.
基金supported by the National Natural Science Foundation of China (61771070)。
文摘Predicting user states in future and rendering visual feedbacks accordingly can effectively reduce the visual experienced delay in the tactile Internet(TI). However, most works omit the fact that different parts in an image may have distinct prediction requirements, based on which different prediction models can be used in the predicting process, and then it can further improve predicting quality especially under resources-limited environment. In this paper, a hybrid prediction scheme is proposed for the visual feedbacks in a typical TI scenario with mixed visuo-haptic interactions, in which haptic traffic needs sufficient wireless resources to meet its stringent communication requirement, leaving less radio resources for the visual feedback. First, the minimum required number of radio resources for haptic traffic is derived based on the haptic communication requirements, and wireless resources are allocated to the haptic and visual traffics afterwards. Then, a grouping strategy is designed based on the deep neural network(DNN) to allocate different parts from an image feedback into two groups to use different prediction models, which jointly considers the prediction deviation thresholds, latency and reliability requirements, and the bit sizes of different image parts. Simulations show that, the hybrid prediction scheme can further reduce the visual experienced delay under haptic traffic requirements compared with existing strategies.
文摘The fifth generation(5G)of wireless networks features three core use cases,namely ultra-reliable and low latency communications(URLLC),massive machine type communications(mMTC),and enhanced mobile broadband(eMBB).These use cases co-exist in many practical scenarios and compete for the same set of time and frequency resources,resulting in a natural trade-off in their performance.In this paper,a network supporting both URLLC and eMBB modes of operation is studied.To guarantee the ultra low latency requirement of URLLC,a dynamic resource allocation scheme indicated by a two-dimensional bitmap is proposed.This approach is capable to achieve finer granularity as well as lower false cancellation rate compared to the state-of-the-art methods.A novel power control and indication method is also proposed to dynamically provide different power control parameters to the user equipment(UE),while guaranteeing the reliability requirement of URLLC and minimizing the impact to eMBB.In addition,we devise a dynamic selection mechanism(DSM)to accommodate diverse scenarios,which is empowered with load prediction to become more intelligent.Our extensive system-level simulation results for eMBB-URLLC co-existence scenarios showcase that the perceived throughput of eMBB UEs is increased by 45.3%,while about 13.3% more UEs are enjoying URLLC services with at most 84% transmit power savings compared to the state-of-the-art methods.