This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing...This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing a voxel model;extracting the road surface points by employing the voxel-based segmentation algorithm;refining the road boundary using the curb-based segmentation algorithm.To evaluate the accuracy of the proposed method,the two-point cloud datasets of two typical test sites in an expressway environment consisting of flat and bumpy surfaces with a high slope were used.The proposed algorithm extracted the road surface successfully with high accuracy.There was an average recall of 99.5%,the precision was 96.3%,and the F1 score was 97.9%.From the extracted road surface,a framework for the estimation of road roughness was proposed.Good agreement was achieved when comparing the results of the road roughness map with the visual image,indicating the feasibility and effectiveness of the proposed framework.展开更多
Roof bolts such as rock bolts and cable bolts provide structural support in underground mines.Frequent assessment of these support structures is critical to maintain roof stability and minimise safety risks in undergr...Roof bolts such as rock bolts and cable bolts provide structural support in underground mines.Frequent assessment of these support structures is critical to maintain roof stability and minimise safety risks in underground environments.This study proposes a robust workflow to classify roof bolts in 3 D point cloud data and to generate maps of roof bolt density and spacing.The workflow was evaluated for identifying roof bolts in an underground coal mine with suboptimal lighting and global navigation satellite system(GNSS)signals not available.The approach is based on supervised classification using the multi-scale Canupo classifier coupled with a random sample consensus(RANSAC)shape detection algorithm to provide robust roof bolt identification.The issue of sparseness in point cloud data has been addressed through upsampling by using a moving least squares method.The accuracy of roof bolt identification was measured by correct identification of roof bolts(true positives),unidentified roof bolts(false negatives),and falsely identified roof bolts(false positives)using correctness,completeness,and quality metrics.The proposed workflow achieved correct identification of 89.27%of the roof bolts present in the test area.However,considering the false positives and false negatives,the overall quality metric was reduced to 78.54%.展开更多
Sustainable forest management heavily relies on the accurate estimation of tree parameters.Among others,the diameter at breast height(DBH) is important for extracting the volume and mass of an individual tree.For syst...Sustainable forest management heavily relies on the accurate estimation of tree parameters.Among others,the diameter at breast height(DBH) is important for extracting the volume and mass of an individual tree.For systematically estimating the volume of entire plots,airborne laser scanning(ALS) data are used.The estimation model is frequently calibrated using manual DBH measurements or static terrestrial laser scans(STLS) of sample plots.Although reliable,this method is time-consuming,which greatly hampers its use.Here,a handheld mobile terrestrial laser scanning(HMTLS) was demonstrated to be a useful alternative technique to precisely and efficiently calculate DBH.Different data acquisition techniques were applied at a sample plot,then the resulting parameters were comparatively analysed.The calculated DBH values were comparable to the manual measurements for HMTLS,STLS,and ALS data sets.Given the comparability of the extracted parameters,with a reduced point density of HTMLS compared to STLS data,and the reasonable increase of performance,with a reduction of acquisition time with a factor of5 compared to conventional STLS techniques and a factor of3 compared to manual measurements,HMTLS is considered a useful alternative technique.展开更多
The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural par...The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural parameters using hand-held laser scanning(HLS),before operationalizing the method,confirming the data is crucial.We analyzed the per-formance of tree-level mapping based on HLS under differ-ent phenology conditions on a mixed forest in western Spain comprising Pinus pinaster and two deciduous species,Alnus glutinosa and Quercus pyrenaica.The area was surveyed twice during the growing season(July 2022)and once in the deciduous season(February 2022)using several scan-ning paths.Ground reference data(418 trees,15 snags)was used to calibrate the HLS data and to assess the influence of phenology when converting 3D data into tree-level attrib-utes(DBH,height and volume).The HLS-based workflow was robust at isolating tree positions and recognizing stems despite changes in phenology.Ninety-six percent of all pairs matched below 65 cm.For DBH,phenology barely altered estimates.We observed a strong agreement when comparing HLS-based tree height distributions.The values exceeded 2 m when comparing height measurements,confirming height data should be carefully used as reference in remote sensing-based inventories,especially for deciduous species.Tree volume was more precise for pines(r=0.95,and rela-tive RMSE=21.3–23.8%)compared to deciduous species(r=0.91–0.96,and relative RMSE=27.3–30.5%).HLS data and the forest structural complexity tool performed remark-ably,especially in tree positioning considering mixed forests and mixed phenology conditions.展开更多
Automatic and accurate classification is a fundamental problem to the analysis and modeling of LiDAR(Light Detection and Ranging)data.Recently,convolutional neural network(ConvNet or CNN)has achieved remarkable perfor...Automatic and accurate classification is a fundamental problem to the analysis and modeling of LiDAR(Light Detection and Ranging)data.Recently,convolutional neural network(ConvNet or CNN)has achieved remarkable performance in image recognition and computer vision.While significant efforts have also been made to develop various deep networks for satellite image scene classification,it still needs to further investigate suitable deep learning network frameworks for 3D dense mobile laser scanning(MLS)data.In this paper,we present a simple deep CNN for multiple object classification based on multi-scale context representation.For the pointwise classification,we first extracted the neighboring points within spatial context and transformed them into a three-channel image for each point.Then,the classification task can be treated as the image recognition using CNN.The proposed CNN architecture adopted common convolution,maximum pooling and rectified linear unit(ReLU)layers,which combined multiple deeper network layers.After being trained and tested on approximately seven million labeled MLS points,the deep CNN model can classify accurately into nine classes.Comparing with the widely used ResNet algorithm,this model performs better precision and recall rates,and less processing time,which indicated the significant potential of deep-learning-based methods in MLS data classification.展开更多
The mobile satellite laser ranging system TROS1000, successfully developed in 2010, achieves a high repetition rate and enables daytime laser ranging. Its measurement range has reached up to 36000 km with an accuracy ...The mobile satellite laser ranging system TROS1000, successfully developed in 2010, achieves a high repetition rate and enables daytime laser ranging. Its measurement range has reached up to 36000 km with an accuracy as precise as 1 cm. Using recent observations in Wuhan, Jiufeng, Xianning, and Rongcheng, Shandong, we introduce the progress made using this mobile observation system.展开更多
Mixed Reality(MR)Head Mounted Displays(HMDs)offer a hitherto underutilized set of advantages compared to conventional 3D scanners.These benefits,inherent to MR-HMDs albeit not originally intended for such appli-cation...Mixed Reality(MR)Head Mounted Displays(HMDs)offer a hitherto underutilized set of advantages compared to conventional 3D scanners.These benefits,inherent to MR-HMDs albeit not originally intended for such appli-cations,encompass the freedom of hand movement,hand tracking capabilities,and real-time mesh visualization.This study leverages these attributes to enhance indoor scanning process.The primary innovation lies in the con-ceptualization of manual-positioned MR virtual seeds for the purpose of indoor point cloud segmentation via a region-growing approach.The proposed methodology is effectively implemented using the HoloLens 2 platform.An application is designed to enable the remote placement of virtual tags based on the user’s visual focus on the MR-HMD display.This non-intrusive interface is further enriched with expedited tag saving and deletion functionalities,as well as augmented tag visualization through overlaying them on real-world objects.To assess the practicality of the proposed method,a comprehensive real-world case study spanning an area of 330 s^(2) is conducted.Remarkably,the survey demonstrates remarkable efficiency,with 20 virtual tags swiftly deployed,each requiring a mere 2 s for precise positioning.Subsequently,these virtual tags are employed as seeds in a region-growing algorithm for point cloud segmentation.The accuracy of virtual tag positioning is found to be exceptional,with an average error of 2.4±1.8 cm.Importantly,the user experience is significantly enhanced,leading to improved seed positioning and,consequently,more accurate final segmentation results.展开更多
基金Project(SIIT-AUN/SEED-Net-G-S1 Y16/018)supported by the Doctoral Asean University Network ProgramProject supported by the Metropolitan Expressway Co.,Ltd.,Japan+2 种基金Project supported by Elysium Co.Ltd.Project supported by Aero Asahi Corporation,Co.,Ltd.Project supported by the Expressway Authority of Thailand。
文摘This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing a voxel model;extracting the road surface points by employing the voxel-based segmentation algorithm;refining the road boundary using the curb-based segmentation algorithm.To evaluate the accuracy of the proposed method,the two-point cloud datasets of two typical test sites in an expressway environment consisting of flat and bumpy surfaces with a high slope were used.The proposed algorithm extracted the road surface successfully with high accuracy.There was an average recall of 99.5%,the precision was 96.3%,and the F1 score was 97.9%.From the extracted road surface,a framework for the estimation of road roughness was proposed.Good agreement was achieved when comparing the results of the road roughness map with the visual image,indicating the feasibility and effectiveness of the proposed framework.
基金financially supported by the Australian Coal Industry’s Research Program(ACARP)Project C27057。
文摘Roof bolts such as rock bolts and cable bolts provide structural support in underground mines.Frequent assessment of these support structures is critical to maintain roof stability and minimise safety risks in underground environments.This study proposes a robust workflow to classify roof bolts in 3 D point cloud data and to generate maps of roof bolt density and spacing.The workflow was evaluated for identifying roof bolts in an underground coal mine with suboptimal lighting and global navigation satellite system(GNSS)signals not available.The approach is based on supervised classification using the multi-scale Canupo classifier coupled with a random sample consensus(RANSAC)shape detection algorithm to provide robust roof bolt identification.The issue of sparseness in point cloud data has been addressed through upsampling by using a moving least squares method.The accuracy of roof bolt identification was measured by correct identification of roof bolts(true positives),unidentified roof bolts(false negatives),and falsely identified roof bolts(false positives)using correctness,completeness,and quality metrics.The proposed workflow achieved correct identification of 89.27%of the roof bolts present in the test area.However,considering the false positives and false negatives,the overall quality metric was reduced to 78.54%.
基金funded by University College GhentGhent University。
文摘Sustainable forest management heavily relies on the accurate estimation of tree parameters.Among others,the diameter at breast height(DBH) is important for extracting the volume and mass of an individual tree.For systematically estimating the volume of entire plots,airborne laser scanning(ALS) data are used.The estimation model is frequently calibrated using manual DBH measurements or static terrestrial laser scans(STLS) of sample plots.Although reliable,this method is time-consuming,which greatly hampers its use.Here,a handheld mobile terrestrial laser scanning(HMTLS) was demonstrated to be a useful alternative technique to precisely and efficiently calculate DBH.Different data acquisition techniques were applied at a sample plot,then the resulting parameters were comparatively analysed.The calculated DBH values were comparable to the manual measurements for HMTLS,STLS,and ALS data sets.Given the comparability of the extracted parameters,with a reduced point density of HTMLS compared to STLS data,and the reasonable increase of performance,with a reduction of acquisition time with a factor of5 compared to conventional STLS techniques and a factor of3 compared to manual measurements,HMTLS is considered a useful alternative technique.
文摘The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural parameters using hand-held laser scanning(HLS),before operationalizing the method,confirming the data is crucial.We analyzed the per-formance of tree-level mapping based on HLS under differ-ent phenology conditions on a mixed forest in western Spain comprising Pinus pinaster and two deciduous species,Alnus glutinosa and Quercus pyrenaica.The area was surveyed twice during the growing season(July 2022)and once in the deciduous season(February 2022)using several scan-ning paths.Ground reference data(418 trees,15 snags)was used to calibrate the HLS data and to assess the influence of phenology when converting 3D data into tree-level attrib-utes(DBH,height and volume).The HLS-based workflow was robust at isolating tree positions and recognizing stems despite changes in phenology.Ninety-six percent of all pairs matched below 65 cm.For DBH,phenology barely altered estimates.We observed a strong agreement when comparing HLS-based tree height distributions.The values exceeded 2 m when comparing height measurements,confirming height data should be carefully used as reference in remote sensing-based inventories,especially for deciduous species.Tree volume was more precise for pines(r=0.95,and rela-tive RMSE=21.3–23.8%)compared to deciduous species(r=0.91–0.96,and relative RMSE=27.3–30.5%).HLS data and the forest structural complexity tool performed remark-ably,especially in tree positioning considering mixed forests and mixed phenology conditions.
基金National Natural Science Foundation of China(Nos.41971423,31972951,41771462)Hunan Provincial Natural Science Foundation of China(No.2020JJ3020)+1 种基金Science and Technology Planning Project of Hunan Province(No.2019RS2043,2019GK2132)Outstanding Youth Project of Education Department of Hunan Province(No.18B224)。
文摘Automatic and accurate classification is a fundamental problem to the analysis and modeling of LiDAR(Light Detection and Ranging)data.Recently,convolutional neural network(ConvNet or CNN)has achieved remarkable performance in image recognition and computer vision.While significant efforts have also been made to develop various deep networks for satellite image scene classification,it still needs to further investigate suitable deep learning network frameworks for 3D dense mobile laser scanning(MLS)data.In this paper,we present a simple deep CNN for multiple object classification based on multi-scale context representation.For the pointwise classification,we first extracted the neighboring points within spatial context and transformed them into a three-channel image for each point.Then,the classification task can be treated as the image recognition using CNN.The proposed CNN architecture adopted common convolution,maximum pooling and rectified linear unit(ReLU)layers,which combined multiple deeper network layers.After being trained and tested on approximately seven million labeled MLS points,the deep CNN model can classify accurately into nine classes.Comparing with the widely used ResNet algorithm,this model performs better precision and recall rates,and less processing time,which indicated the significant potential of deep-learning-based methods in MLS data classification.
基金supported by the National Natural Science Foundation of China (40774013, 41274189)
文摘The mobile satellite laser ranging system TROS1000, successfully developed in 2010, achieves a high repetition rate and enables daytime laser ranging. Its measurement range has reached up to 36000 km with an accuracy as precise as 1 cm. Using recent observations in Wuhan, Jiufeng, Xianning, and Rongcheng, Shandong, we introduce the progress made using this mobile observation system.
基金partially supported by RYC2022-038100-I and RYC2020-029193-I funded by MCIN/AEI/10.13039/501100011033 and FSE‘El FSE invierte en tu futuro’a result of the project PID2021-123475OA-I00,funded by MCIN/AEI/10.13039/501100011033/FEDER,UE."+1 种基金the framework of the SUM4Re project(Creating materials banks from digital urban mining),which has received funding from the Horizon Europe research and innovation program under grant agreement no.101129961Funded by the European Union.
文摘Mixed Reality(MR)Head Mounted Displays(HMDs)offer a hitherto underutilized set of advantages compared to conventional 3D scanners.These benefits,inherent to MR-HMDs albeit not originally intended for such appli-cations,encompass the freedom of hand movement,hand tracking capabilities,and real-time mesh visualization.This study leverages these attributes to enhance indoor scanning process.The primary innovation lies in the con-ceptualization of manual-positioned MR virtual seeds for the purpose of indoor point cloud segmentation via a region-growing approach.The proposed methodology is effectively implemented using the HoloLens 2 platform.An application is designed to enable the remote placement of virtual tags based on the user’s visual focus on the MR-HMD display.This non-intrusive interface is further enriched with expedited tag saving and deletion functionalities,as well as augmented tag visualization through overlaying them on real-world objects.To assess the practicality of the proposed method,a comprehensive real-world case study spanning an area of 330 s^(2) is conducted.Remarkably,the survey demonstrates remarkable efficiency,with 20 virtual tags swiftly deployed,each requiring a mere 2 s for precise positioning.Subsequently,these virtual tags are employed as seeds in a region-growing algorithm for point cloud segmentation.The accuracy of virtual tag positioning is found to be exceptional,with an average error of 2.4±1.8 cm.Importantly,the user experience is significantly enhanced,leading to improved seed positioning and,consequently,more accurate final segmentation results.