A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as...A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works.展开更多
It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the bous...It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. .展开更多
We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic...We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic mobile robot by com-bining the variable z of the Arnold equation and the kinematic equation of the robot. Second, we construct the candidate sets including the initial points with a relatively high coverage rate of the constructed mobile robot. Then the trajectory is contracted to the current position of the robot based on the designed contraction transformation strategy, to form a continuous complete cov-erage trajectory to execute the specific types of missions. Compared with the traditional method, the designed algorithm requires no obstacle avoidance to the boundary of the given workplace, possesses a high coverage rate, and keeps the chaotic characteristics of the produced coverage trajectory relatively unchanged, which enables the robot to accomplish special missions with features of completeness, randomness, or unpredictability.展开更多
We introduce a novel strategy of designing a chaotic coverage path planner for the mobile robot based on the Che- byshev map for achieving special missions. The designed chaotic path planner consists of a two-dimensio...We introduce a novel strategy of designing a chaotic coverage path planner for the mobile robot based on the Che- byshev map for achieving special missions. The designed chaotic path planner consists of a two-dimensional Chebyshev map which is constructed by two one-dimensional Chebyshev maps. The performance of the time sequences which are generated by the planner is improved by arcsine transformation to enhance the chaotic characteristics and uniform distribution. Then the coverage rate and randomness for achieving the special missions of the robot are enhanced. The chaotic Chebyshev system is mapped into the feasible region of the robot workplace by affine transformation. Then a universal algorithm of coverage path planning is designed for environments with obstacles. Simulation results show that the constructed chaotic path planner can avoid detection of the obstacles and the workplace boundaries, and runs safely in the feasible areas. The designed strategy is able to satisfy the requirements of randomness, coverage, and high efficiency for special missions.展开更多
With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ab...With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ability of the robot to complete the task is also valued and widely used.In this paper, the whole covered area of the local path planning uses a fuzzy control algorithm,which uses the robustness and an action of perception based on the biological behavior of the fuzzy control algorithm combined with itself.For obstacle avoidance system of mobile robots,we put forward the avoidance strategy of fully contacting the obstacles.And we have conducted a deep study about the theory and implementation methods.展开更多
文摘A wireless sensor network (WSN) is spatially distributing independent sensors to monitor physical and environmental characteristics such as temperature, sound, pressure and also provides different applications such as battlefield inspection and biological detection. The Constrained Motion and Sensor (CMS) Model represents the features and explain k-step reach ability testing to describe the states. The description and calculation based on CMS model does not solve the problem in mobile robots. The ADD framework based on monitoring radio measurements creates a threshold. But the methods are not effective in dynamic coverage of complex environment. In this paper, a Localized Coverage based on Shape and Area Detection (LCSAD) Framework is developed to increase the dynamic coverage using mobile robots. To facilitate the measurement in mobile robots, two algorithms are designed to identify the coverage area, (i.e.,) the area of a coverage hole or not. The two algorithms are Localized Geometric Voronoi Hexagon (LGVH) and Acquaintance Area Hexagon (AAH). LGVH senses all the shapes and it is simple to show all the boundary area nodes. AAH based algorithm simply takes directional information by locating the area of local and global convex points of coverage area. Both these algorithms are applied to WSN of random topologies. The simulation result shows that the proposed LCSAD framework attains minimal energy utilization, lesser waiting time, and also achieves higher scalability, throughput, delivery rate and 8% maximal coverage connectivity in sensor network compared to state-of-art works.
文摘It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. .
基金Project supported by the National Natural Science Foundation of China(Nos.61473179,61602280,and 61573213)the Natural Science Foundation of Shandong Province,China(Nos.ZR2017MF047,ZR2015CM016,and ZR2014FM007)the Shandong University of Technology&Zibo City Integration Development Project,China(No.2018ZBXC295)。
文摘We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic mobile robot by com-bining the variable z of the Arnold equation and the kinematic equation of the robot. Second, we construct the candidate sets including the initial points with a relatively high coverage rate of the constructed mobile robot. Then the trajectory is contracted to the current position of the robot based on the designed contraction transformation strategy, to form a continuous complete cov-erage trajectory to execute the specific types of missions. Compared with the traditional method, the designed algorithm requires no obstacle avoidance to the boundary of the given workplace, possesses a high coverage rate, and keeps the chaotic characteristics of the produced coverage trajectory relatively unchanged, which enables the robot to accomplish special missions with features of completeness, randomness, or unpredictability.
基金Project supported by thc National Natural Science Foundation of China (Nos. 61473179, 61573213, and 61233014), the Natural Sci- ence Foundation of Shandong Province, China (Nos. ZR2014FM007 and ZR2015CM016), and the Key Research and Development Project of Shandong Province, China (No. 2016GGX101027)
文摘We introduce a novel strategy of designing a chaotic coverage path planner for the mobile robot based on the Che- byshev map for achieving special missions. The designed chaotic path planner consists of a two-dimensional Chebyshev map which is constructed by two one-dimensional Chebyshev maps. The performance of the time sequences which are generated by the planner is improved by arcsine transformation to enhance the chaotic characteristics and uniform distribution. Then the coverage rate and randomness for achieving the special missions of the robot are enhanced. The chaotic Chebyshev system is mapped into the feasible region of the robot workplace by affine transformation. Then a universal algorithm of coverage path planning is designed for environments with obstacles. Simulation results show that the constructed chaotic path planner can avoid detection of the obstacles and the workplace boundaries, and runs safely in the feasible areas. The designed strategy is able to satisfy the requirements of randomness, coverage, and high efficiency for special missions.
文摘With the continuous development of modem sensor technology, coupled with the integration of artificial intelligence and a variety of emerging computer technology, it makes robots more intelligent and diverse.So the ability of the robot to complete the task is also valued and widely used.In this paper, the whole covered area of the local path planning uses a fuzzy control algorithm,which uses the robustness and an action of perception based on the biological behavior of the fuzzy control algorithm combined with itself.For obstacle avoidance system of mobile robots,we put forward the avoidance strategy of fully contacting the obstacles.And we have conducted a deep study about the theory and implementation methods.