期刊文献+
共找到229篇文章
< 1 2 12 >
每页显示 20 50 100
A finite-time fuzzy adaptive output-feedback fault-tolerant control for underactuated wheeled mobile robots systems
1
作者 Pingfan Liu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第2期111-118,共8页
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ... This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach. 展开更多
关键词 Underactuated wheeled mobile robots system FINITE-TIME Fuzzy adaptive fault-tolerant control OUTPUT-FEEDBACK Intermittent actuator faults
下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
2
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
Heuristic Expanding Disconnected Graph:A Rapid Path Planning Method for Mobile Robots
3
作者 Yong Tao Lian Duan +3 位作者 He Gao Yufan Zhang Yian Song Tianmiao Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期68-82,共15页
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th... Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality. 展开更多
关键词 Global path planning mobile robot Expanding disconnected graph Edge node OFFSET
下载PDF
A Practical Study of Intelligent Image-Based Mobile Robot for Tracking Colored Objects
4
作者 Mofadal Alymani Mohamed Esmail Karar Hazem Ibrahim Shehata 《Computers, Materials & Continua》 SCIE EI 2024年第8期2181-2197,共17页
Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile r... Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads. 展开更多
关键词 mobile robot autonomous systems fuzzy logic control real-time image processing
下载PDF
Stabilization of Dynamic Systems for Multiple Omni-Directional Mobile Robots
5
作者 王朝立 谈大龙 王越超 《Journal of Southeast University(English Edition)》 EI CAS 2001年第1期35-40,共6页
This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a ro... This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective. 展开更多
关键词 omni directional mobile robot DYNAMICS COORDINATION collision avoidance STABILIZATION
下载PDF
Multi-sensor systems and information processing of mobile robot in uncertain environments
6
作者 乔凤斌 杨汝清 《Journal of Southeast University(English Edition)》 EI CAS 2004年第3期341-345,共5页
The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sens... The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sensors and a vision sensor. The PBJ- 01 adopts behavior-based reactive control architecture in which the key part is an object recognition system based on a fuzzy neural network. Simulation validates that this system can conclude the obstacle type from the sensor data, and help the robot decide whether to negotiate or to avoid obstacles. 展开更多
关键词 mobile robot behavior-based reactive control architecture neural network
下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:20
7
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
下载PDF
A Switching Controller System for a Wheeled Mobile Robot 被引量:4
8
作者 Masanori Sato Atushi Kanda Kazuo Ishii 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第4期281-289,共9页
A wheeled mobile mechanism with a passive and/or active linkage mechanism for rough terrain environment is developed and evaluated. The wheeled mobile mechanism which has high mobility in rough terrain needs sophistic... A wheeled mobile mechanism with a passive and/or active linkage mechanism for rough terrain environment is developed and evaluated. The wheeled mobile mechanism which has high mobility in rough terrain needs sophisticated system to adapt various environments. We focus on the development of a switching controller system for wheeled mobile robots in rough terrain. This system consists of two sub-systems: an environment recognition system using link angles and an adaptive control system. In the environment recognition system, we introduce a Self-Organizing Map (SOM) for clustering link angles. In the adaptive controllers, we introduce neural networks to calculate the inverse model of the wheeled mobile robot. The environment recognition system can recognize the environment in which the robot travels, and the adjustable controllers are tuned by experimental results for each environment. The dual sub-system switching controller system is experimentally evaluated. The system recognizes its environment and adapts by switching the adjustable controllers. This system demonstrates superior performance to a well-tuned single PID controller. 展开更多
关键词 mobile robot rough terrain neural network Self-Organizing Map
下载PDF
Design of dead reckoning system for mobile robot 被引量:3
9
作者 于金霞 蔡自兴 +1 位作者 段琢华 邹小兵 《Journal of Central South University of Technology》 EI 2006年第5期542-547,共6页
A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the... A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the locomotion architecture of mobile robot and the principle of proprioceptive sensors, the kinematics model of mobile robot was built to realize the relative localization. Considering that the research on dead reckoning of mobile robot was confined to the 2 dimensional planes, the locomotion of mobile robot in the 3 coordinate axis direction was thought over in order to estimate its pose on uneven terrain. Because the computing method in a plane is rather mature, the calculation in height direction is emphatically represented as a key issue. With experimental results obtained by simulation program and robot platform, the position of mobile robot can be reliably estimated and the localization precision can be effectively improved, so the effectiveness of this dead reckoning system is demonstrated. 展开更多
关键词 wheeled mobile robot dead reckoning proprioceptive sensor kinematic equations
下载PDF
Accurate parameter estimation of systematic odometry errors for two-wheel differential mobile robots 被引量:3
10
作者 Changbae Jung Woojin Chung 《Journal of Measurement Science and Instrumentation》 CAS 2012年第3期268-272,共5页
Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance ... Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method. 展开更多
关键词 calibration kinematic modeling errors mobile robots ODOMETRY test tracks
下载PDF
Optimisation-based Verification Process of Obstacle Avoidance Systems for Unicycle-like Mobile Robots 被引量:2
11
作者 Sivaranjini Srikanthakumar 《International Journal of Automation and computing》 EI 2011年第3期340-347,共8页
This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global o... This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations. 展开更多
关键词 Verification process obstacle avoidance unicycle mobile robot potential field method optimisation.
下载PDF
Dynamic Consensus of High-order Multi-agent Systems and Its Application in the Motion Control of Multiple Mobile Robots 被引量:3
12
作者 Zhong-Qiang Wu Yang Wang 《International Journal of Automation and computing》 EI 2012年第1期54-62,共9页
In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any ord... In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any order, and only the output information of each agent is delivered throughout the communication network. When the interaction topology is fixed, the leader-following consensus is attained by Ho~ dynamic output feedback control, and the sufficient condition of robust controllers is equal to the solvability of linear matrix inequality (LMI). The whole analysis is based on spectral decomposition and an equivalent decoupled structure achieved, and the stability of the system is proved. Finally, we extended the theoretical results to the case that the interaction topology is switching. The simulation results for multiple mobile robots show the effectiveness of the devised methods. 展开更多
关键词 Multi-agent systems consensus problem dynamic output feedback linear matrix inequality (LMI) multiple mobile robots.
下载PDF
A dual working mode mobile robot system based on visual guiding and visual servoing 被引量:1
13
作者 彭一准 Yuan Kui +1 位作者 Zou Wei Hu Huosheng 《High Technology Letters》 EI CAS 2007年第4期337-342,共6页
A dual operational modes mobile robot system based on visual guiding and visual servo control is presented. This system consists of a mobile robot with a two-axis manipulator and a tele-operation station. In the visua... A dual operational modes mobile robot system based on visual guiding and visual servo control is presented. This system consists of a mobile robot with a two-axis manipulator and a tele-operation station. In the visual guiding mode, for the robot works in an open loop visual servo control mode, the manipulating burden of the operator is reduced largely. In the visual servo mode the robot can locate the position of the target assigned by the operator and pick it up by its manipulator. With the help of the operator, the diffieuh problems of finding and handling a target in a complicated environment by the robot can be solved easily. 展开更多
关键词 TELE-OPERATION mobile robot visual guiding visual servo control
下载PDF
Path Planning of the Multiple Mobile Robot System Applied in Chinese Chess Game 被引量:1
14
作者 Jr-Hong Guo Kuo-Lan Su Sheng-Ven Shiau 《Journal of Mechanics Engineering and Automation》 2011年第3期217-226,共10页
The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the ... The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the supervised computer. The supervised computer programs the motion paths using A* searching algorithm, and controls mobile robots moving on the grid based chessboard platform via wireless radio frequency (RF) interface. The A* searching algorithm solves shortest path problems of mobile robots from the start point to the target point, and avoids the obstacles on the chessboard platform. The supervised computer calculates the total time to play the game, and computes the residual time to play chess in the step for each player. The simulation results can fired out the shortest motion paths of the mobile robots (chesses) moving to target points from start points in the monitor, and decides the motion path to be existence or not. The eaten chess can moves to the assigned position, and uses the A* searching algorithm to program the motion path, too. Finally, the authors implement the simulation results on the chessboard platform using mobile robots. Users can play the Chinese chess game on the supervised computer according to the Chinese chess game rule, and play each step of the game in the assigned time. The supervised computer can suggests which player don't obey the rules of the game, and decides which player to be a winner. The scenario of the Chinese chess game feedback to the user interface using the image system. 展开更多
关键词 Path planning Chinese chess game multiple mobile robots A* searching algorithm wireless RF (radio frequency) interface.
下载PDF
Artificial Potential Field Incorporated Deep-Q-Network Algorithm for Mobile Robot Path Prediction 被引量:3
15
作者 A.Sivaranjani B.Vinod 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期1135-1150,共16页
Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a st... Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a state action function in mobile robots suited to their environment.During trial-and-error interaction with its surroundings,it helps a robot tofind an ideal behavior on its own.The Deep Q Network(DQN)algorithm is used in TurtleBot 3(TB3)to achieve the goal by successfully avoiding the obstacles.But it requires a large number of training iterations.This research mainly focuses on a mobility robot’s best path prediction utilizing DQN and the Artificial Potential Field(APF)algorithms.First,a TB3 Waffle Pi DQN is built and trained to reach the goal.Then the APF shortest path algorithm is incorporated into the DQN algorithm.The proposed planning approach is compared with the standard DQN method in a virtual environment based on the Robot Operation System(ROS).The results from the simulation show that the combination is effective for DQN and APF gives a better optimal path and takes less time when compared to the conventional DQN algo-rithm.The performance improvement rate of the proposed DQN+APF in comparison with DQN in terms of the number of successful targets is attained by 88%.The performance of the proposed DQN+APF in comparison with DQN in terms of average time is achieved by 0.331 s.The performance of the proposed DQN+APF in comparison with DQN average rewards in which the positive goal is attained by 85%and the negative goal is attained by-90%. 展开更多
关键词 Artificial potentialfield deep reinforcement learning mobile robot turtle bot deep Q network path prediction
下载PDF
A review of mobile robot motion planning methods:from classical motion planning workflows to reinforcement learning-based architectures 被引量:2
16
作者 DONG Lu HE Zichen +1 位作者 SONG Chunwei SUN Changyin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期439-459,共21页
Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion pl... Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion planners is challenged.With the development of machine learning,the deep reinforcement learning(DRL)-based motion planner has gradually become a research hotspot due to its several advantageous feature.The DRL-based motion planner is model-free and does not rely on the prior structured map.Most importantly,the DRL-based motion planner achieves the unification of the global planner and the local planner.In this paper,we provide a systematic review of various motion planning methods.Firstly,we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features.Then,we concentrate on summarizing reinforcement learning(RL)-based motion planning approaches,including motion planners combined with RL improvements,map-free RL-based motion planners,and multi-robot cooperative planning methods.Finally,we analyze the urgent challenges faced by these mainstream RLbased motion planners in detail,review some state-of-the-art works for these issues,and propose suggestions for future research. 展开更多
关键词 mobile robot reinforcement learning(RL) motion planning multi-robot cooperative planning
下载PDF
Research on Self-balancing Two Wheels Mobile Robot Control System Analysis 被引量:1
17
作者 Hla Myo Tun Myat Su Nwe +3 位作者 Zaw Min Naing Maung Maung Latt Devasis Pradhan Prasanna Kumar Sahu 《Electrical Science & Engineering》 2022年第1期7-20,共14页
The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to c... The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to carry the sensitive things without failing in a long span period.The main objective of this study is to focus on the mathematical modelling of mobile robot from laboratory scale to real world applications.The numerical expression with mathematical modelling is very important to control the mobile robot system with linearization.The fundamental concepts of dynamic system stability were utilized for maintaining the stability of the constructed mobile robot system.The controller design is also important for checking the stability and the appropriate controller design is proportional,integral,and derivative-PID controller and Linear Quadratic Regulator(LQR).The steady state error could be reduced by using such kind of PID controller.The simulation of numerical expression on mathematical modeling was conducted in MATLAB environments.The confirmation results from the simulation techniques were applied to construct the hardware design of mobile robot system for practical study.The results from simulation approaches and experimental approaches are matched in various kinds of analyses.The constructed mobile robot system was designed and analyzed in the control system design laboratory of Yangon Technological University(YTU). 展开更多
关键词 mobile robot Self-balancing robot Control system design PID controller Dynamic control system analysis
下载PDF
Metaheuristics Algorithm for Tuning of PID Controller of Mobile Robot System
18
作者 Harsh Goud Prakash Chandra Sharma +6 位作者 Kashif Nisar Muhammad Reazul Haque Ag.Asri Ag.Ibrahim Narendra Singh Yadav Pankaj Swarnkar Manoj Gupta Laxmi Chand 《Computers, Materials & Continua》 SCIE EI 2022年第8期3481-3492,共12页
Robots in the medical industry are becoming more common in daily life because of various advantages such as quick response,less human interference,high dependability,improved hygiene,and reduced aging effects.That is ... Robots in the medical industry are becoming more common in daily life because of various advantages such as quick response,less human interference,high dependability,improved hygiene,and reduced aging effects.That is why,in recent years,robotic aid has emerged as a blossoming solution to many challenges in the medical industry.In this manuscript,meta-heuristics(MH)algorithms,specifically the Firefly Algorithm(FF)and Genetic Algorithm(GA),are applied to tune PID controller constraints such as Proportional gain Kp Integral gain Ki and Derivative gain Kd.The controller is used to control Mobile Robot System(MRS)at the required set point.The FF arrangements are made based on various pre-analysis.A detailed simulation study indicates that the proposed PID controller tuned with Firefly Algorithm(FF-PID)for MRSis beneficial and suitable to achieve desired closed-loop system response.The FF is touted as providing an easy,reliable,and efficient tuning technique for PID controllers.The most suitable ideal performance is accomplished with FF-PID,according to the display in the time response.Further,the observed response is compared to those received by applying GA and conventional off-line tuning techniques.The comparison of all tuning methods exhibits supremacy of FF-PID tuning of the given nonlinear Mobile Robot System than GA-PID tuning and conventional controller. 展开更多
关键词 Metaheuristic algorithm genetic algorithm PID controller mobile robot system firefly algorithm
下载PDF
Map Building for a Mobile Robot Based on Grey System Theory
19
作者 王卫华 席裕庚 陈卫东 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第3期67-72,共6页
In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of &... In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of 'grey number is introduced to model and handle the uncertainty of sonar reading. A new data fusion approach based on grey system theory is proposed to construct environment model. Map building experiments are performed both on a platform of simulation and a real mobile robot. Experimental results show that our method is robust and accurate. 展开更多
关键词 Grey system theory UNCERTAINTY Map building mobile robot.
下载PDF
The investigation of an autonomous intelligent mobile robot system for indoor environment navigation
20
作者 付宜利 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第2期129-134,共6页
The autonomous mobile robotics system designed and implemented for indoor environment navigation is a nonholonomic differential drive system with two driving wheels mounted on the same axis driven by two PID controlle... The autonomous mobile robotics system designed and implemented for indoor environment navigation is a nonholonomic differential drive system with two driving wheels mounted on the same axis driven by two PID controlled motors and two caster wheels mounted in the front and back respectively. It is furnished with multiple kinds of sensors such as IR detectors, ultrasonic sensors, laser line generators and cameras, constituting a perceiving system for exploring its surroundings. Its computation source is a simultaneously running system composed of multiprocessor with multitask and multiprocessing programming. Hybrid control architecture is employed on the mobile robot to perform complex tasks. The mobile robot system is implemented at the Center for Intelligent Design, Automation and Manufacturing of City University of Hong Kong. 展开更多
关键词 mobile robot intelligent control SENSORS NAVIGATION
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部