This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th...Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.展开更多
Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile r...Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads.展开更多
This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a ro...This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective.展开更多
The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sens...The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sensors and a vision sensor. The PBJ- 01 adopts behavior-based reactive control architecture in which the key part is an object recognition system based on a fuzzy neural network. Simulation validates that this system can conclude the obstacle type from the sensor data, and help the robot decide whether to negotiate or to avoid obstacles.展开更多
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ...A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.展开更多
A wheeled mobile mechanism with a passive and/or active linkage mechanism for rough terrain environment is developed and evaluated. The wheeled mobile mechanism which has high mobility in rough terrain needs sophistic...A wheeled mobile mechanism with a passive and/or active linkage mechanism for rough terrain environment is developed and evaluated. The wheeled mobile mechanism which has high mobility in rough terrain needs sophisticated system to adapt various environments. We focus on the development of a switching controller system for wheeled mobile robots in rough terrain. This system consists of two sub-systems: an environment recognition system using link angles and an adaptive control system. In the environment recognition system, we introduce a Self-Organizing Map (SOM) for clustering link angles. In the adaptive controllers, we introduce neural networks to calculate the inverse model of the wheeled mobile robot. The environment recognition system can recognize the environment in which the robot travels, and the adjustable controllers are tuned by experimental results for each environment. The dual sub-system switching controller system is experimentally evaluated. The system recognizes its environment and adapts by switching the adjustable controllers. This system demonstrates superior performance to a well-tuned single PID controller.展开更多
A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the...A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the locomotion architecture of mobile robot and the principle of proprioceptive sensors, the kinematics model of mobile robot was built to realize the relative localization. Considering that the research on dead reckoning of mobile robot was confined to the 2 dimensional planes, the locomotion of mobile robot in the 3 coordinate axis direction was thought over in order to estimate its pose on uneven terrain. Because the computing method in a plane is rather mature, the calculation in height direction is emphatically represented as a key issue. With experimental results obtained by simulation program and robot platform, the position of mobile robot can be reliably estimated and the localization precision can be effectively improved, so the effectiveness of this dead reckoning system is demonstrated.展开更多
Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance ...Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method.展开更多
This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global o...This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.展开更多
In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any ord...In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any order, and only the output information of each agent is delivered throughout the communication network. When the interaction topology is fixed, the leader-following consensus is attained by Ho~ dynamic output feedback control, and the sufficient condition of robust controllers is equal to the solvability of linear matrix inequality (LMI). The whole analysis is based on spectral decomposition and an equivalent decoupled structure achieved, and the stability of the system is proved. Finally, we extended the theoretical results to the case that the interaction topology is switching. The simulation results for multiple mobile robots show the effectiveness of the devised methods.展开更多
A dual operational modes mobile robot system based on visual guiding and visual servo control is presented. This system consists of a mobile robot with a two-axis manipulator and a tele-operation station. In the visua...A dual operational modes mobile robot system based on visual guiding and visual servo control is presented. This system consists of a mobile robot with a two-axis manipulator and a tele-operation station. In the visual guiding mode, for the robot works in an open loop visual servo control mode, the manipulating burden of the operator is reduced largely. In the visual servo mode the robot can locate the position of the target assigned by the operator and pick it up by its manipulator. With the help of the operator, the diffieuh problems of finding and handling a target in a complicated environment by the robot can be solved easily.展开更多
The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the ...The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the supervised computer. The supervised computer programs the motion paths using A* searching algorithm, and controls mobile robots moving on the grid based chessboard platform via wireless radio frequency (RF) interface. The A* searching algorithm solves shortest path problems of mobile robots from the start point to the target point, and avoids the obstacles on the chessboard platform. The supervised computer calculates the total time to play the game, and computes the residual time to play chess in the step for each player. The simulation results can fired out the shortest motion paths of the mobile robots (chesses) moving to target points from start points in the monitor, and decides the motion path to be existence or not. The eaten chess can moves to the assigned position, and uses the A* searching algorithm to program the motion path, too. Finally, the authors implement the simulation results on the chessboard platform using mobile robots. Users can play the Chinese chess game on the supervised computer according to the Chinese chess game rule, and play each step of the game in the assigned time. The supervised computer can suggests which player don't obey the rules of the game, and decides which player to be a winner. The scenario of the Chinese chess game feedback to the user interface using the image system.展开更多
Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a st...Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a state action function in mobile robots suited to their environment.During trial-and-error interaction with its surroundings,it helps a robot tofind an ideal behavior on its own.The Deep Q Network(DQN)algorithm is used in TurtleBot 3(TB3)to achieve the goal by successfully avoiding the obstacles.But it requires a large number of training iterations.This research mainly focuses on a mobility robot’s best path prediction utilizing DQN and the Artificial Potential Field(APF)algorithms.First,a TB3 Waffle Pi DQN is built and trained to reach the goal.Then the APF shortest path algorithm is incorporated into the DQN algorithm.The proposed planning approach is compared with the standard DQN method in a virtual environment based on the Robot Operation System(ROS).The results from the simulation show that the combination is effective for DQN and APF gives a better optimal path and takes less time when compared to the conventional DQN algo-rithm.The performance improvement rate of the proposed DQN+APF in comparison with DQN in terms of the number of successful targets is attained by 88%.The performance of the proposed DQN+APF in comparison with DQN in terms of average time is achieved by 0.331 s.The performance of the proposed DQN+APF in comparison with DQN average rewards in which the positive goal is attained by 85%and the negative goal is attained by-90%.展开更多
Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion pl...Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion planners is challenged.With the development of machine learning,the deep reinforcement learning(DRL)-based motion planner has gradually become a research hotspot due to its several advantageous feature.The DRL-based motion planner is model-free and does not rely on the prior structured map.Most importantly,the DRL-based motion planner achieves the unification of the global planner and the local planner.In this paper,we provide a systematic review of various motion planning methods.Firstly,we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features.Then,we concentrate on summarizing reinforcement learning(RL)-based motion planning approaches,including motion planners combined with RL improvements,map-free RL-based motion planners,and multi-robot cooperative planning methods.Finally,we analyze the urgent challenges faced by these mainstream RLbased motion planners in detail,review some state-of-the-art works for these issues,and propose suggestions for future research.展开更多
The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to c...The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to carry the sensitive things without failing in a long span period.The main objective of this study is to focus on the mathematical modelling of mobile robot from laboratory scale to real world applications.The numerical expression with mathematical modelling is very important to control the mobile robot system with linearization.The fundamental concepts of dynamic system stability were utilized for maintaining the stability of the constructed mobile robot system.The controller design is also important for checking the stability and the appropriate controller design is proportional,integral,and derivative-PID controller and Linear Quadratic Regulator(LQR).The steady state error could be reduced by using such kind of PID controller.The simulation of numerical expression on mathematical modeling was conducted in MATLAB environments.The confirmation results from the simulation techniques were applied to construct the hardware design of mobile robot system for practical study.The results from simulation approaches and experimental approaches are matched in various kinds of analyses.The constructed mobile robot system was designed and analyzed in the control system design laboratory of Yangon Technological University(YTU).展开更多
Robots in the medical industry are becoming more common in daily life because of various advantages such as quick response,less human interference,high dependability,improved hygiene,and reduced aging effects.That is ...Robots in the medical industry are becoming more common in daily life because of various advantages such as quick response,less human interference,high dependability,improved hygiene,and reduced aging effects.That is why,in recent years,robotic aid has emerged as a blossoming solution to many challenges in the medical industry.In this manuscript,meta-heuristics(MH)algorithms,specifically the Firefly Algorithm(FF)and Genetic Algorithm(GA),are applied to tune PID controller constraints such as Proportional gain Kp Integral gain Ki and Derivative gain Kd.The controller is used to control Mobile Robot System(MRS)at the required set point.The FF arrangements are made based on various pre-analysis.A detailed simulation study indicates that the proposed PID controller tuned with Firefly Algorithm(FF-PID)for MRSis beneficial and suitable to achieve desired closed-loop system response.The FF is touted as providing an easy,reliable,and efficient tuning technique for PID controllers.The most suitable ideal performance is accomplished with FF-PID,according to the display in the time response.Further,the observed response is compared to those received by applying GA and conventional off-line tuning techniques.The comparison of all tuning methods exhibits supremacy of FF-PID tuning of the given nonlinear Mobile Robot System than GA-PID tuning and conventional controller.展开更多
In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of &...In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of 'grey number is introduced to model and handle the uncertainty of sonar reading. A new data fusion approach based on grey system theory is proposed to construct environment model. Map building experiments are performed both on a platform of simulation and a real mobile robot. Experimental results show that our method is robust and accurate.展开更多
The autonomous mobile robotics system designed and implemented for indoor environment navigation is a nonholonomic differential drive system with two driving wheels mounted on the same axis driven by two PID controlle...The autonomous mobile robotics system designed and implemented for indoor environment navigation is a nonholonomic differential drive system with two driving wheels mounted on the same axis driven by two PID controlled motors and two caster wheels mounted in the front and back respectively. It is furnished with multiple kinds of sensors such as IR detectors, ultrasonic sensors, laser line generators and cameras, constituting a perceiving system for exploring its surroundings. Its computation source is a simultaneously running system composed of multiprocessor with multitask and multiprocessing programming. Hybrid control architecture is employed on the mobile robot to perform complex tasks. The mobile robot system is implemented at the Center for Intelligent Design, Automation and Manufacturing of City University of Hong Kong.展开更多
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB4700402).
文摘Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.
基金The authors extend their appreciation to the Deanship of Scientific Research at Shaqra University for funding this research work through the Project Number(SU-ANN-2023016).
文摘Object tracking is one of the major tasks for mobile robots in many real-world applications.Also,artificial intelligence and automatic control techniques play an important role in enhancing the performance of mobile robot navigation.In contrast to previous simulation studies,this paper presents a new intelligent mobile robot for accomplishing multi-tasks by tracking red-green-blue(RGB)colored objects in a real experimental field.Moreover,a practical smart controller is developed based on adaptive fuzzy logic and custom proportional-integral-derivative(PID)schemes to achieve accurate tracking results,considering robot command delay and tolerance errors.The design of developed controllers implies some motion rules to mimic the knowledge of experienced operators.Twelve scenarios of three colored object combinations have been successfully tested and evaluated by using the developed controlled image-based robot tracker.Classical PID control failed to handle some tracking scenarios in this study.The proposed adaptive fuzzy PID control achieved the best accurate results with the minimum average final error of 13.8 cm to reach the colored targets,while our designed custom PID control is efficient in saving both average time and traveling distance of 6.6 s and 14.3 cm,respectively.These promising results demonstrate the feasibility of applying our developed image-based robotic system in a colored object-tracking environment to reduce human workloads.
文摘This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective.
文摘The PBJ- 01 robot is a kind of mobile robot featuring six wheels and two swing arms which can help it to fit many terrains. The robot has a sophisticated sensor system, which includes ultrasonic sensors, tentacle sensors and a vision sensor. The PBJ- 01 adopts behavior-based reactive control architecture in which the key part is an object recognition system based on a fuzzy neural network. Simulation validates that this system can conclude the obstacle type from the sensor data, and help the robot decide whether to negotiate or to avoid obstacles.
文摘A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.
文摘A wheeled mobile mechanism with a passive and/or active linkage mechanism for rough terrain environment is developed and evaluated. The wheeled mobile mechanism which has high mobility in rough terrain needs sophisticated system to adapt various environments. We focus on the development of a switching controller system for wheeled mobile robots in rough terrain. This system consists of two sub-systems: an environment recognition system using link angles and an adaptive control system. In the environment recognition system, we introduce a Self-Organizing Map (SOM) for clustering link angles. In the adaptive controllers, we introduce neural networks to calculate the inverse model of the wheeled mobile robot. The environment recognition system can recognize the environment in which the robot travels, and the adjustable controllers are tuned by experimental results for each environment. The dual sub-system switching controller system is experimentally evaluated. The system recognizes its environment and adapts by switching the adjustable controllers. This system demonstrates superior performance to a well-tuned single PID controller.
基金Project(60234030) supported by the National Natural Science Foundation of China
文摘A dead reckoning system for a wheeled mobile robot was designed, and the method for robot’s pose estimation in the 3D environments was presented on the basis of its rigid-body kinematic equations. After analyzing the locomotion architecture of mobile robot and the principle of proprioceptive sensors, the kinematics model of mobile robot was built to realize the relative localization. Considering that the research on dead reckoning of mobile robot was confined to the 2 dimensional planes, the locomotion of mobile robot in the 3 coordinate axis direction was thought over in order to estimate its pose on uneven terrain. Because the computing method in a plane is rather mature, the calculation in height direction is emphatically represented as a key issue. With experimental results obtained by simulation program and robot platform, the position of mobile robot can be reliably estimated and the localization precision can be effectively improved, so the effectiveness of this dead reckoning system is demonstrated.
基金The MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support programsupervised by the NIPA(National ITIndustry Promotion Agency)(NIPA-2012-C1090-1221-0010)TheMKE,Korea,under the Human Resources Development Programfor Convergence Robot Specialists support programsu-pervised by the NIPA(NIPA-2012-H1502-12-1002)Basic Science Research Program through the NRF funded by the MEST(2011-0025980)and MEST(2012-0005487)
文摘Odometry using incremental wheel encoder odometry suffers from the accumulation of kinematic sensors provides the relative robot pose estimation. However, the modeling errors of wheels as the robot's travel distance increases. Therefore, the systematic errors need to be calibrated. The University of Michigan Benchmark(UMBmark) method is a widely used calibration scheme of the systematic errors in two wheel differential mobile robots. In this paper, the accurate parameter estimation of systematic errors is proposed by extending the conventional method. The contributions of this paper can be summarized as two issues. The first contribution is to present new calibration equations that reduce the systematic odometry errors. The new equations were derived to overcome the limitation of conventional schemes. The second contribu tion is to propose the design guideline of the test track for calibration experiments. The calibration performance can be im proved by appropriate design of the test track. The simulations and experimental results show that the accurate parameter es timation can be implemented by the proposed method.
文摘This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.
文摘In this paper, the leader-following consensus problem for multi-agent linear dynamic systems is considered. All agents and leader have identical multi-input multi-output (MIMO) linear dynamics that can be of any order, and only the output information of each agent is delivered throughout the communication network. When the interaction topology is fixed, the leader-following consensus is attained by Ho~ dynamic output feedback control, and the sufficient condition of robust controllers is equal to the solvability of linear matrix inequality (LMI). The whole analysis is based on spectral decomposition and an equivalent decoupled structure achieved, and the stability of the system is proved. Finally, we extended the theoretical results to the case that the interaction topology is switching. The simulation results for multiple mobile robots show the effectiveness of the devised methods.
基金Supported by the National High Technology Research and Development Program of China (No. 2003AA421030) and the National Science Foundation of China (No. 60375026).
文摘A dual operational modes mobile robot system based on visual guiding and visual servo control is presented. This system consists of a mobile robot with a two-axis manipulator and a tele-operation station. In the visual guiding mode, for the robot works in an open loop visual servo control mode, the manipulating burden of the operator is reduced largely. In the visual servo mode the robot can locate the position of the target assigned by the operator and pick it up by its manipulator. With the help of the operator, the diffieuh problems of finding and handling a target in a complicated environment by the robot can be solved easily.
文摘The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the supervised computer. The supervised computer programs the motion paths using A* searching algorithm, and controls mobile robots moving on the grid based chessboard platform via wireless radio frequency (RF) interface. The A* searching algorithm solves shortest path problems of mobile robots from the start point to the target point, and avoids the obstacles on the chessboard platform. The supervised computer calculates the total time to play the game, and computes the residual time to play chess in the step for each player. The simulation results can fired out the shortest motion paths of the mobile robots (chesses) moving to target points from start points in the monitor, and decides the motion path to be existence or not. The eaten chess can moves to the assigned position, and uses the A* searching algorithm to program the motion path, too. Finally, the authors implement the simulation results on the chessboard platform using mobile robots. Users can play the Chinese chess game on the supervised computer according to the Chinese chess game rule, and play each step of the game in the assigned time. The supervised computer can suggests which player don't obey the rules of the game, and decides which player to be a winner. The scenario of the Chinese chess game feedback to the user interface using the image system.
文摘Autonomous navigation of mobile robots is a challenging task that requires them to travel from their initial position to their destination without collision in an environment.Reinforcement Learning methods enable a state action function in mobile robots suited to their environment.During trial-and-error interaction with its surroundings,it helps a robot tofind an ideal behavior on its own.The Deep Q Network(DQN)algorithm is used in TurtleBot 3(TB3)to achieve the goal by successfully avoiding the obstacles.But it requires a large number of training iterations.This research mainly focuses on a mobility robot’s best path prediction utilizing DQN and the Artificial Potential Field(APF)algorithms.First,a TB3 Waffle Pi DQN is built and trained to reach the goal.Then the APF shortest path algorithm is incorporated into the DQN algorithm.The proposed planning approach is compared with the standard DQN method in a virtual environment based on the Robot Operation System(ROS).The results from the simulation show that the combination is effective for DQN and APF gives a better optimal path and takes less time when compared to the conventional DQN algo-rithm.The performance improvement rate of the proposed DQN+APF in comparison with DQN in terms of the number of successful targets is attained by 88%.The performance of the proposed DQN+APF in comparison with DQN in terms of average time is achieved by 0.331 s.The performance of the proposed DQN+APF in comparison with DQN average rewards in which the positive goal is attained by 85%and the negative goal is attained by-90%.
基金supported by the National Natural Science Foundation of China (62173251)the“Zhishan”Scholars Programs of Southeast University+1 种基金the Fundamental Research Funds for the Central UniversitiesShanghai Gaofeng&Gaoyuan Project for University Academic Program Development (22120210022)
文摘Motion planning is critical to realize the autonomous operation of mobile robots.As the complexity and randomness of robot application scenarios increase,the planning capability of the classical hierarchical motion planners is challenged.With the development of machine learning,the deep reinforcement learning(DRL)-based motion planner has gradually become a research hotspot due to its several advantageous feature.The DRL-based motion planner is model-free and does not rely on the prior structured map.Most importantly,the DRL-based motion planner achieves the unification of the global planner and the local planner.In this paper,we provide a systematic review of various motion planning methods.Firstly,we summarize the representative and state-of-the-art works for each submodule of the classical motion planning architecture and analyze their performance features.Then,we concentrate on summarizing reinforcement learning(RL)-based motion planning approaches,including motion planners combined with RL improvements,map-free RL-based motion planners,and multi-robot cooperative planning methods.Finally,we analyze the urgent challenges faced by these mainstream RLbased motion planners in detail,review some state-of-the-art works for these issues,and propose suggestions for future research.
基金fully supported by Government Research Funds for 2021-2022 Academic Year.
文摘The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies.The research problem in this work is to stabilize the mobile robot with self-control and to carry the sensitive things without failing in a long span period.The main objective of this study is to focus on the mathematical modelling of mobile robot from laboratory scale to real world applications.The numerical expression with mathematical modelling is very important to control the mobile robot system with linearization.The fundamental concepts of dynamic system stability were utilized for maintaining the stability of the constructed mobile robot system.The controller design is also important for checking the stability and the appropriate controller design is proportional,integral,and derivative-PID controller and Linear Quadratic Regulator(LQR).The steady state error could be reduced by using such kind of PID controller.The simulation of numerical expression on mathematical modeling was conducted in MATLAB environments.The confirmation results from the simulation techniques were applied to construct the hardware design of mobile robot system for practical study.The results from simulation approaches and experimental approaches are matched in various kinds of analyses.The constructed mobile robot system was designed and analyzed in the control system design laboratory of Yangon Technological University(YTU).
文摘Robots in the medical industry are becoming more common in daily life because of various advantages such as quick response,less human interference,high dependability,improved hygiene,and reduced aging effects.That is why,in recent years,robotic aid has emerged as a blossoming solution to many challenges in the medical industry.In this manuscript,meta-heuristics(MH)algorithms,specifically the Firefly Algorithm(FF)and Genetic Algorithm(GA),are applied to tune PID controller constraints such as Proportional gain Kp Integral gain Ki and Derivative gain Kd.The controller is used to control Mobile Robot System(MRS)at the required set point.The FF arrangements are made based on various pre-analysis.A detailed simulation study indicates that the proposed PID controller tuned with Firefly Algorithm(FF-PID)for MRSis beneficial and suitable to achieve desired closed-loop system response.The FF is touted as providing an easy,reliable,and efficient tuning technique for PID controllers.The most suitable ideal performance is accomplished with FF-PID,according to the display in the time response.Further,the observed response is compared to those received by applying GA and conventional off-line tuning techniques.The comparison of all tuning methods exhibits supremacy of FF-PID tuning of the given nonlinear Mobile Robot System than GA-PID tuning and conventional controller.
基金This project was supported by the National High-Tech Research and Development Plan (2001AA422140) National Science Foundation (69889501, 60105005).
文摘In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of 'grey number is introduced to model and handle the uncertainty of sonar reading. A new data fusion approach based on grey system theory is proposed to construct environment model. Map building experiments are performed both on a platform of simulation and a real mobile robot. Experimental results show that our method is robust and accurate.
文摘The autonomous mobile robotics system designed and implemented for indoor environment navigation is a nonholonomic differential drive system with two driving wheels mounted on the same axis driven by two PID controlled motors and two caster wheels mounted in the front and back respectively. It is furnished with multiple kinds of sensors such as IR detectors, ultrasonic sensors, laser line generators and cameras, constituting a perceiving system for exploring its surroundings. Its computation source is a simultaneously running system composed of multiprocessor with multitask and multiprocessing programming. Hybrid control architecture is employed on the mobile robot to perform complex tasks. The mobile robot system is implemented at the Center for Intelligent Design, Automation and Manufacturing of City University of Hong Kong.