To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem...To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.展开更多
This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global o...This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.展开更多
In the context of robot soccer, the robots have to select actions to achieve individual and team goals in the dynamic environment. It is important for a robot to acquire navigation behaviors for avoiding other robots ...In the context of robot soccer, the robots have to select actions to achieve individual and team goals in the dynamic environment. It is important for a robot to acquire navigation behaviors for avoiding other robots and obstacles in the real time environment. This paper suggested an efficient approach to collision avoidance in multi robot system. This approach is based on velocity information of moving objects and the distance between robot and obstacle in three specified directions. The main contribution of this paper is that it provides a method for robots with decreased computational cost and makes the robot navigate without collision with each other in a complicated environment.展开更多
Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented prac...Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm.展开更多
Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path pl...Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path planning algorithm incorporating improved IB-RRT∗and deep reinforce-ment learning(DRL)is proposed.Firstly,an improved IB-RRT∗algorithm is proposed for global path planning by combining double elliptic subset sampling and probabilistic central circle target bi-as.Then,to tackle the slow response to dynamic obstacles and inadequate obstacle avoidance of tra-ditional local path planning algorithms,deep reinforcement learning is utilized to predict the move-ment trend of dynamic obstacles,leading to a dynamic fusion path planning.Finally,the simulation and experiment results demonstrate that the proposed improved IB-RRT∗algorithm has higher con-vergence speed and search efficiency compared with traditional Bi-RRT∗,Informed-RRT∗,and IB-RRT∗algorithms.Furthermore,the proposed fusion algorithm can effectively perform real-time obsta-cle avoidance and navigation tasks for mobile robots in unstructured environments.展开更多
Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinemat...Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinematics of the normal and abnormal movement states were exploited, 8 kinds of features were extracted. Secondly, 4 multi-layer pereeptrons were employed to classify the features for four 4-driving wheels into 4 kinds of states, i.e. normal, blocked, deadly blocked, and slipping. Finally, avoidance strategies were designed based on this. Experiment results show that the methods can identify most abnormal movement states and avoid the abnormality correctly and timely.展开更多
In this paper,the fault-tolerant formation control(FTFC)problem is investigated for a group of uncertain nonholonomic mobile robots with limited communication ranges and unpredicted actuator faults,where the communica...In this paper,the fault-tolerant formation control(FTFC)problem is investigated for a group of uncertain nonholonomic mobile robots with limited communication ranges and unpredicted actuator faults,where the communication between the robots is in a directed one-to-one way.In order to guarantee the connectivity preservation and collision avoidance among the robots,some properly chosen performance functions are incorporated into the controller to per-assign the asymmetrical bounds for relative distance and bearing angle between each pair of adjacent mobile robots.Particularly,the resultant control scheme remains at a costeffective level because its design does not use any velocity information from neighbors,any prior knowledge of system nonlinearities or any nonlinear approximator to account for them despite the presence of modeling uncertainties,unknown external disturbances,and unexpected actuator faults.Meanwhile,each follower is derived to track the leader with the tracking errors regarding relative distance and bearing angle subject to prescribed transient and steady-state performance guarantees,respectively.Moreover,all the closed-loop signals are ensured to be ultimately uniformly bounded.Finally,a numerical example is simulated to verify the effectiveness of this methodology.展开更多
Obstacle detection is essential for mobile robots to avoid collision with obstacles.Mobile robots usually operate in indoor environments,where they encounter various kinds of obstacles;however,2D range sensor can sens...Obstacle detection is essential for mobile robots to avoid collision with obstacles.Mobile robots usually operate in indoor environments,where they encounter various kinds of obstacles;however,2D range sensor can sense obstacles only in 2D plane.In contrast,by using 3D range sensor,it is possible to detect ground and aerial obstacles that 2D range sensor cannot sense.In this paper,we present a 3D obstacle detection method that will help overcome the limitations of 2D range sensor with regard to obstacle detection.The indoor environment typically consists of a flat floor.The position of the floor can be determined by estimating the plane using the least squares method.Having determined the position of the floor,the points of obstacles can be known by rejecting the points of the floor.In the experimental section,we show the results of this approach using a Kinect sensor.展开更多
An obstacle avoidance scheme of a two-wheeled mobile robot is shown by selecting an appropriate Lya- punov function. When considering the obstacle, the Lyapunov function may have some local minima. A method which eras...An obstacle avoidance scheme of a two-wheeled mobile robot is shown by selecting an appropriate Lya- punov function. When considering the obstacle, the Lyapunov function may have some local minima. A method which erases the local minima is proposed by using a function which covers the minima with a plane surface. The effectiveness of the proposed method is verified by numerical simulations.展开更多
In order to overcome the shortcomings of the previous obstacle avoidance algorithms,an obstacle avoidance algorithm applicable to multiple mobile obstacles was proposed.The minimum prediction distance between obstacle...In order to overcome the shortcomings of the previous obstacle avoidance algorithms,an obstacle avoidance algorithm applicable to multiple mobile obstacles was proposed.The minimum prediction distance between obstacles and a manipulator was obtained according to the states of obstacles and transformed to escape velocity of the corresponding link of the manipulator.The escape velocity was introduced to the gradient projection method to obtain the joint velocity of the manipulator so as to complete the obstacle avoidance trajectory planning.A7-DOF manipulator was used in the simulation,and the results verified the effectiveness of the algorithm.展开更多
A robot intelligent path planning system RIPPS is developed, which can be utilized for a robot off line programming tool. The system consists of three parts: geometric modeler, kinematic modeler and path planer. The...A robot intelligent path planning system RIPPS is developed, which can be utilized for a robot off line programming tool. The system consists of three parts: geometric modeler, kinematic modeler and path planer. The geometric modeler is used to construct the robot working environment cluttered with obstacles and the robot kinematic modeler to define robot manipulators by the input parameters. Giving robot start and the goal configurations, the path planer can produce a quasi optimal path. By transforming obstacles into the C space to form C obstacles, the path searching is performed in C space. The planning simulations are performed on a SGI workstation, the future research is to implement the planer on a commercial robot manipulators.展开更多
This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a ro...This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective.展开更多
This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is d...This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.展开更多
A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predict...A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.展开更多
This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an o...This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an optimized manner, in addition to avoid the singularity phenomenon, and without any exceeding of the physical constraints of the robot arm. A real platform (5 DOF "Degree Of Freedom" Lab Volt 5150 Robotic Arm) is used to carry this work practically, in addition to providing it by a vision sensor, where a new approach is proposed to inspect the robot work environment using a designed integrated MATLAB program having the ability to recognize the changeable locations of each of the robotic arm's end-effector, the goal, and the multi existed obstacles through a recorded film taken by a webcam, then these information will be treated using the FLC where its outputs represent the values that must be delivered to the robot to adopt them in its next steps till reaching to the goal in collision-free movements. The experimental results showed that the developed robotic ann travels successfully from Start to Goal where a high percentage of accuracy in arriving to Goal was achieved, and without colliding with any obstacle ensuring the harmonization between the theoretical part and the experimental part in achieving the best results of controlling the robotic arm's motion.展开更多
In this paper, a formation control algorithm and an obstade avoidance control algorithm for mobile robots are developed based on a relative motion sensory system such as a pan/tilt camera vision system, without the ne...In this paper, a formation control algorithm and an obstade avoidance control algorithm for mobile robots are developed based on a relative motion sensory system such as a pan/tilt camera vision system, without the need for global sensing and between robots. This is achieved by employing the velocity variation, instead of actual velocities, as the control inputs. Simulation and experimental results have demonstrated the effectiveness of the proposed control methods.展开更多
In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was stu...In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot.展开更多
Collision avoidance is always difficult in the planning path for a mobile robot. In this paper, the virtual force field between a mobile robot and an obstacle is formed and regulated to maintain a desired distance by ...Collision avoidance is always difficult in the planning path for a mobile robot. In this paper, the virtual force field between a mobile robot and an obstacle is formed and regulated to maintain a desired distance by hybrid force control algorithm. Since uncertainties from robot dynamics and obstacle degrade the performance of a collision avoidance task, intelligent control is used to compensate for the uncertainties. A radial basis function (RBF) neural network is used to regulate the force field of an accurate distance between a robot and an obstacle in this paper and then simulation studies are conducted to confirm that the proposed algorithm is effective.展开更多
In this research work,a hierarchical controller has been designed for an autonomous navigation robot to avoid unexpected moving obstacles where the state and action spaces are continuous.The proposed scheme consists o...In this research work,a hierarchical controller has been designed for an autonomous navigation robot to avoid unexpected moving obstacles where the state and action spaces are continuous.The proposed scheme consists of two parts:1)a controller with a high-level approximate reinforcement learning(ARL)technique for choosing an optimal trajectory in autonomous navigation;and 2)a low-level,appearance-based visual servoing(ABVS)controller which controls and execute the motion of the robot.A novel approach for path planning and visual servoing has been proposed by the combined system framework.The characteristics of the on-board camera which is equipped on the robot is naturally suitable for conducting the reinforcement learning algorithm.Regarding the ARL controller,the computational overhead is quite low thanks to the fact that a knowledge of obstacle motion is not necessary.The developed scheme has been implemented and validated in a simulation system of obstacle avoidance.It is noted that findings of the proposed method are successfully verified by obtaining an optimal robotic plan motion strategy.展开更多
基金Project(60475035) supported by the National Natural Science Foundation of China
文摘To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.
文摘This paper presents an optimisatiombased verification process for obstacle avoidance systems of a unicycle-like mobile robot. It is a novel approach for the collision avoidance verification process. Local and global optimisation based verification processes are developed to find the worst-case parameters and the worst-case distance between the robot and an obstacle. The kinematic and dynamic model of the unicycle-like mobile robot is first introduced with force and torque as the inputs. The design of the control system is split into two parts. One is velocity and rotation using the robot dynamics, and the other is the incremental motion planning for robot kinematics. The artificial potential field method is chosen as a path planning and obstacle avoidance candidate technique for verification study as it is simple and widely used. Different optimisation algorithms are applied and compared for the purpose of verification. It is shown that even for a simple case study where only mass and inertia variations are considered, a local optimization based verification method may fail to identify the worst case. Two global optimisation methods have been investigated: genetic algorithms (GAs) and GLOBAL algorithms. Both of these methods successfully find the worst case. The verification process confirms that the obstacle avoidance algorithm functions correctly in the presence of all the possible parameter variations.
文摘In the context of robot soccer, the robots have to select actions to achieve individual and team goals in the dynamic environment. It is important for a robot to acquire navigation behaviors for avoiding other robots and obstacles in the real time environment. This paper suggested an efficient approach to collision avoidance in multi robot system. This approach is based on velocity information of moving objects and the distance between robot and obstacle in three specified directions. The main contribution of this paper is that it provides a method for robots with decreased computational cost and makes the robot navigate without collision with each other in a complicated environment.
基金This research has been funded by Scientific Research Deanship at University of Ha’il–Saudi Arabia through Project Number BA-2107.
文摘Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm.
基金the National Natural Science Foundation of China(No.61973275)。
文摘Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path planning algorithm incorporating improved IB-RRT∗and deep reinforce-ment learning(DRL)is proposed.Firstly,an improved IB-RRT∗algorithm is proposed for global path planning by combining double elliptic subset sampling and probabilistic central circle target bi-as.Then,to tackle the slow response to dynamic obstacles and inadequate obstacle avoidance of tra-ditional local path planning algorithms,deep reinforcement learning is utilized to predict the move-ment trend of dynamic obstacles,leading to a dynamic fusion path planning.Finally,the simulation and experiment results demonstrate that the proposed improved IB-RRT∗algorithm has higher con-vergence speed and search efficiency compared with traditional Bi-RRT∗,Informed-RRT∗,and IB-RRT∗algorithms.Furthermore,the proposed fusion algorithm can effectively perform real-time obsta-cle avoidance and navigation tasks for mobile robots in unstructured environments.
基金Project (60234030) supported by the National Natural Science Foundation of China
文摘Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinematics of the normal and abnormal movement states were exploited, 8 kinds of features were extracted. Secondly, 4 multi-layer pereeptrons were employed to classify the features for four 4-driving wheels into 4 kinds of states, i.e. normal, blocked, deadly blocked, and slipping. Finally, avoidance strategies were designed based on this. Experiment results show that the methods can identify most abnormal movement states and avoid the abnormality correctly and timely.
基金supported in part by the National KeyResearch and Development Program of China under Grant 2021ZD0201300Fundamental Research Funds for the Central Universities under Project 2021CDJXKJC001in part by the Chongqing Human Resources and Social Security Bureau under Grant cx2021114.
文摘In this paper,the fault-tolerant formation control(FTFC)problem is investigated for a group of uncertain nonholonomic mobile robots with limited communication ranges and unpredicted actuator faults,where the communication between the robots is in a directed one-to-one way.In order to guarantee the connectivity preservation and collision avoidance among the robots,some properly chosen performance functions are incorporated into the controller to per-assign the asymmetrical bounds for relative distance and bearing angle between each pair of adjacent mobile robots.Particularly,the resultant control scheme remains at a costeffective level because its design does not use any velocity information from neighbors,any prior knowledge of system nonlinearities or any nonlinear approximator to account for them despite the presence of modeling uncertainties,unknown external disturbances,and unexpected actuator faults.Meanwhile,each follower is derived to track the leader with the tracking errors regarding relative distance and bearing angle subject to prescribed transient and steady-state performance guarantees,respectively.Moreover,all the closed-loop signals are ensured to be ultimately uniformly bounded.Finally,a numerical example is simulated to verify the effectiveness of this methodology.
基金The MKE(Ministry of Knowledge Economy),Korea,under the ITRC(Information Technology Research Center)support program(NIPA-2013-H0301-13-2006)supervised by the NIPA(National IT Industry Promotion Agency)The National Research Foundation of Korea(NRF)grant funded by the Korea government(MEST)(2013-029812)The MKE(Ministry of Knowledge Economy),Korea,under the Human Resources Development Program for Convergence Robot Specialists support program supervised by the NIPA(NIPA-2013-H1502-13-1001)
文摘Obstacle detection is essential for mobile robots to avoid collision with obstacles.Mobile robots usually operate in indoor environments,where they encounter various kinds of obstacles;however,2D range sensor can sense obstacles only in 2D plane.In contrast,by using 3D range sensor,it is possible to detect ground and aerial obstacles that 2D range sensor cannot sense.In this paper,we present a 3D obstacle detection method that will help overcome the limitations of 2D range sensor with regard to obstacle detection.The indoor environment typically consists of a flat floor.The position of the floor can be determined by estimating the plane using the least squares method.Having determined the position of the floor,the points of obstacles can be known by rejecting the points of the floor.In the experimental section,we show the results of this approach using a Kinect sensor.
文摘An obstacle avoidance scheme of a two-wheeled mobile robot is shown by selecting an appropriate Lya- punov function. When considering the obstacle, the Lyapunov function may have some local minima. A method which erases the local minima is proposed by using a function which covers the minima with a plane surface. The effectiveness of the proposed method is verified by numerical simulations.
基金Supported by Ministeral Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘In order to overcome the shortcomings of the previous obstacle avoidance algorithms,an obstacle avoidance algorithm applicable to multiple mobile obstacles was proposed.The minimum prediction distance between obstacles and a manipulator was obtained according to the states of obstacles and transformed to escape velocity of the corresponding link of the manipulator.The escape velocity was introduced to the gradient projection method to obtain the joint velocity of the manipulator so as to complete the obstacle avoidance trajectory planning.A7-DOF manipulator was used in the simulation,and the results verified the effectiveness of the algorithm.
文摘A robot intelligent path planning system RIPPS is developed, which can be utilized for a robot off line programming tool. The system consists of three parts: geometric modeler, kinematic modeler and path planer. The geometric modeler is used to construct the robot working environment cluttered with obstacles and the robot kinematic modeler to define robot manipulators by the input parameters. Giving robot start and the goal configurations, the path planer can produce a quasi optimal path. By transforming obstacles into the C space to form C obstacles, the path searching is performed in C space. The planning simulations are performed on a SGI workstation, the future research is to implement the planer on a commercial robot manipulators.
文摘This paper deals with the stabilization of dynamic systems for two omni directional mobile robots by using the inner product of two vectors, one is from a robot's position to another's, the other is from a robot's target point to another's. The multi step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be greater than or equal to the collision free safe distance. The application of it to two omni directional mobile robots is described. Simulation result shows that the proposed controller is effective.
基金Project (No.2002CB312200) supported by the National Basic Research Program (973) of China
文摘This paper proposes novel multiple-mobile-robot collision avoidance path planning based on cooperative co-evolution,which can be executed fully distributed and in parallel. A real valued co-evolutionary algorithm is developed to coordinate the movement of multiple robots in 2D world, avoiding C-space or grid net searching. The collision avoidance is achieved by cooperatively co-evolving segments of paths and the time interval to pass them. Methods for constraint handling, which are developed for evolutionary algorithm, make the path planning easier. The effectiveness of the algorithm is demonstrated on a number of 2Dpath planning problems.
文摘A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.
文摘This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an optimized manner, in addition to avoid the singularity phenomenon, and without any exceeding of the physical constraints of the robot arm. A real platform (5 DOF "Degree Of Freedom" Lab Volt 5150 Robotic Arm) is used to carry this work practically, in addition to providing it by a vision sensor, where a new approach is proposed to inspect the robot work environment using a designed integrated MATLAB program having the ability to recognize the changeable locations of each of the robotic arm's end-effector, the goal, and the multi existed obstacles through a recorded film taken by a webcam, then these information will be treated using the FLC where its outputs represent the values that must be delivered to the robot to adopt them in its next steps till reaching to the goal in collision-free movements. The experimental results showed that the developed robotic ann travels successfully from Start to Goal where a high percentage of accuracy in arriving to Goal was achieved, and without colliding with any obstacle ensuring the harmonization between the theoretical part and the experimental part in achieving the best results of controlling the robotic arm's motion.
文摘In this paper, a formation control algorithm and an obstade avoidance control algorithm for mobile robots are developed based on a relative motion sensory system such as a pan/tilt camera vision system, without the need for global sensing and between robots. This is achieved by employing the velocity variation, instead of actual velocities, as the control inputs. Simulation and experimental results have demonstrated the effectiveness of the proposed control methods.
基金Supported by the Ministerial Level Advanced Research Foundation(40401060305)
文摘In order to improve the ability of a bionic quadruped robot to percept the location of obstacles in a complex and dynamic environment, the information fusion between an ultrasonic sensor and a binocular sensor was studied under the condition that the robot moves in the Walk gait on a structured road. Firstly, the distance information of obstacles from these two sensors was separately processed by the Kalman filter algorithm, which largely reduced the noise interference. After that, we obtained two groups of estimated distance values from the robot to the obstacle and a variance of the estimation value. Additionally, a fusion of the estimation values and the variances was achieved based on the STF fusion algorithm. Finally, a simulation was performed to show that the curve of a real value was tracked well by that of the estimation value, which attributes to the effectiveness of the Kalman filter algorithm. In contrast to statistics before fusion, the fusion variance of the estimation value was sharply decreased. The precision of the position information is 4. 6 cm, which meets the application requirements of the robot.
基金Project supported by the Science and Technology Stress Projects of Hebei Province, China (Grant No 07213526)
文摘Collision avoidance is always difficult in the planning path for a mobile robot. In this paper, the virtual force field between a mobile robot and an obstacle is formed and regulated to maintain a desired distance by hybrid force control algorithm. Since uncertainties from robot dynamics and obstacle degrade the performance of a collision avoidance task, intelligent control is used to compensate for the uncertainties. A radial basis function (RBF) neural network is used to regulate the force field of an accurate distance between a robot and an obstacle in this paper and then simulation studies are conducted to confirm that the proposed algorithm is effective.
基金supported by research grants from the Natural Sciences and Engineering Research Council(NSERC)of Canadathe British Columbia Knowledge Development Fund(BCKDF)+1 种基金the Canada Foundation for Innovation(CFI)the Canada Research Chair in Mechatronics and Industrial Automation held by C.W.de Silva
文摘In this research work,a hierarchical controller has been designed for an autonomous navigation robot to avoid unexpected moving obstacles where the state and action spaces are continuous.The proposed scheme consists of two parts:1)a controller with a high-level approximate reinforcement learning(ARL)technique for choosing an optimal trajectory in autonomous navigation;and 2)a low-level,appearance-based visual servoing(ABVS)controller which controls and execute the motion of the robot.A novel approach for path planning and visual servoing has been proposed by the combined system framework.The characteristics of the on-board camera which is equipped on the robot is naturally suitable for conducting the reinforcement learning algorithm.Regarding the ARL controller,the computational overhead is quite low thanks to the fact that a knowledge of obstacle motion is not necessary.The developed scheme has been implemented and validated in a simulation system of obstacle avoidance.It is noted that findings of the proposed method are successfully verified by obtaining an optimal robotic plan motion strategy.