With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also...With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also significantly improve user experience.Integrating with the MEC and satellite networks,the network is empowered popular content ubiquitously and seamlessly.Addressing the research gap between multilayer satellite networks and MEC,we study the caching placement problem in this paper.Initially,we introduce a three-layer distributed network caching management architecture designed for efficient and flexible handling of large-scale networks.Considering the constraint on satellite capacity and content propagation delay,the cache placement problem is then formulated and transformed into a markov decision process(MDP),where the content coded caching mechanism is utilized to promote the efficiency of content delivery.Furthermore,a new generic metric,content delivery cost,is proposed to elaborate the performance of caching decision in large-scale networks.Then,we introduce a graph convolutional network(GCN)-based multi-agent advantage actor-critic(A2C)algorithm to optimize the caching decision.Finally,extensive simulations are conducted to evaluate the proposed algorithm in terms of content delivery cost and transferability.展开更多
For mobile satellite networks, an appropriate handover scheme should be devised to shorten handover delay with optimized application of network resources. By introducing the handover cost model of service, this articl...For mobile satellite networks, an appropriate handover scheme should be devised to shorten handover delay with optimized application of network resources. By introducing the handover cost model of service, this article proposes a rerouting triggering scheme for path optimization after handover and a new minimum cost handover algorithm for mobile satellite networks. This algorithm ensures the quality of service (QoS) parameters, such as delay, during the handover and minimizes the handover costs. Simulation indicates that this algorithm is superior to other current algorithms in guaranteeing the QoS and decreasing handover costs.展开更多
Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems...Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems have been widely discussed by industries and academics,and even are expected to be applied in those huge constellations in construction.This paper points out the trends of two stages towards system integration of the terrestrial mobile communication and the satellite communications:to be compatible with 5G,and to be integrated within 6G.Based on analysis of the challenges of both stages,key technologies are thereafter analyzed in detail,covering both air interface currently discussed in 3GPP for B5G and also novel network architecture and related transmission technologies toward future 6G.展开更多
This paper presents a novel blind adaptive noncoherent decorrelative multiuser detector for nonlinearly modulated satellite mobile Code Division Multiple Access (CDMA) systems. By using the known signature waveforms o...This paper presents a novel blind adaptive noncoherent decorrelative multiuser detector for nonlinearly modulated satellite mobile Code Division Multiple Access (CDMA) systems. By using the known signature waveforms of the counterpart earth station in the blind adaptive multiuser detector, the system performance has been improved obviously. The computation results about the convergence properties of the new detector and the previous detectors demonstrate that the proposed multiuser detector has better performance than previous multiuser detectors for nonlinearly modulated CDMA systems.展开更多
This paper presents a propagation model for land-mobile-satellite (LMS) wideband radio channel in built-up environment. The model characterizes the behavior of the radio channel, under shadowing and multipath effects ...This paper presents a propagation model for land-mobile-satellite (LMS) wideband radio channel in built-up environment. The model characterizes the behavior of the radio channel, under shadowing and multipath effects due to buildings, with variation of the elevation angle of the satellite. The wideband parameters (coherent bandwidth and time delay spreading) for LMS channel, in residential and urban environments, are computed. These parameters can be considered as a measure of the amount of ISI (inter-symbol interference) of the radio channel, which distorts the received signal and accordingly increases the bit error rate. The calculated values for these parameters using our model, show very good agreement with the corresponding measured ones, which accordingly shows the validity of the developed model for radio channel design in satellite mobile communication systems.展开更多
This paper presents a statistical model for land mobile satellite channel based on emprical fomulas, which implies that the received signal consists of Line of sight and Rayleigh components, and only LOS component i...This paper presents a statistical model for land mobile satellite channel based on emprical fomulas, which implies that the received signal consists of Line of sight and Rayleigh components, and only LOS component is shadowed, the emprical fomulas and coefficients which make the model valid over a wide range of elevation angles, and analyses the bit error rate performance of narrow band BPSK.展开更多
An accurate, complete and realistic channel model is re- quired to accurately analyze the system performance of a multiple input multiple output (MIMO) broadband satellite mobile commu- nication system with dual-ort...An accurate, complete and realistic channel model is re- quired to accurately analyze the system performance of a multiple input multiple output (MIMO) broadband satellite mobile commu- nication system with dual-orthogonal polarized antennas (DPAs). In most current studies, the channel characteristic matrix (CCM) is always formed by an independent identical distribution (i.i.d) model of Rayleigh or Rice distribution and nevertheless incomplete and inaccurate to describe a broadband dual-orthogonal polarized MIMO land mobile satellite (BDM-LMS) channel. This paper fo- cuses on establishing the BDM-LMS channel statistical model, which combines the 4-state broadband LMS channel model, the time selective fading features, the channel covariance information (CCI) channel model and polarization correlations between an- tennas. The modeling steps of the channel model are introduced. The main emphasis is placed on the effects of the factors, such as antenna numbers, temporal correlations, terminal environments, elevation angles and polarization correlations between the DPAs, on the channel capacity in the BDM-LMS system. Many simulation results are provided to illustrate the effects of these factors through comparisons of the transmit rate, ergodic capacity and outage capacity with different factor values. Besides, the MIMO outage capacity advantages, which indicate the benefits of MIMO com- pared with a single input single output (SISO) system under the same channel condition, are also studied under i.i.d or BDM-LMS channel.展开更多
The paper describes the development of mobile communication first and then points out that it is necessary for China to develop satellite mobile communication after comparing the cellular mobile communication with the...The paper describes the development of mobile communication first and then points out that it is necessary for China to develop satellite mobile communication after comparing the cellular mobile communication with the satellite mobile communication. After comparing the geostationary satellite system with the low earth orbit satellite mobile communication system, as well as the single-beam system with the multibeams system, both used in satellite mobile communication, we suggest that China, according to its economic status and level of satellite technology, should develop a geostationary multibeam satellite for its domestic mobile communication.展开更多
The tracking and stable control of a typical shipmounted mobile satellite communication system(MSCS) is studied.Unlike the former studies based on simplified single-axis models,a tri-axis nonlinear model including t...The tracking and stable control of a typical shipmounted mobile satellite communication system(MSCS) is studied.Unlike the former studies based on simplified single-axis models,a tri-axis nonlinear model including the kinematic and dynamic features of the MSCS is used as the control object.An adaptive robust controller with trajectory planning is designed to deal with large parametric uncertainties and uncertain nonlinearities of the system.A theoretic performance result is given and proved.The designed adaptive robust controller and other two traditional controllers are tested in the comparative simulations under three different situations.The simulation results show the tracking and stable validity of the proposed controller.展开更多
It is a challenging problem to design a high performance modulation for mobile satellite communications due to the limited power and bandwidth resource.The paper improves Feher patented Quadrature Phase Shift Keying(F...It is a challenging problem to design a high performance modulation for mobile satellite communications due to the limited power and bandwidth resource.The paper improves Feher patented Quadrature Phase Shift Keying(FQPSK) by redefining the waveform.The novel FQPSK,with con-stant envelope,can be used to improve the power efficiency and frequency efficiency of mobile satellite communication.The study shows that the improved FQPSK outperforms conventional FQPSK over AWGN and is immune to the non-linearity of high power amplifier.At last,the impact of flat fading and multi-path fading of channel on the BER performance of improved modulation is analyzed.展开更多
Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kind...Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kinds of channel environment were considered in this paper:the urban area,the rural area,and the open space.Four combinations of modulation and coding were designed to meet reliable communication on time-varying channel,and spectral efficiency and system throughput of these three kinds of channel environment were simulated.Based on the simulation results,this paper analysed the results and compared the performances of AMC with non-AMC system in these three kinds of channel environment.At last,we come to the conclusions:a system with AMC can achieve higher spectral efficiency and better system throughput;and the spectral efficiency and system throughput of AMC system will be higher on better satellite mobile channel.展开更多
A mobile satellite indoor signal is proposed to model perfor mance of cooperative communication protocols and maximal ra tio combining.Cooperative diversity can improve the reliability of satellite system and increase...A mobile satellite indoor signal is proposed to model perfor mance of cooperative communication protocols and maximal ra tio combining.Cooperative diversity can improve the reliability of satellite system and increase data speed or expand cell radi us by lessening the effects of fading.Performance is determined by measured bit error rates(BERs)in different types of coopera tive protocols and indoor systems(e.g.GSM and WCDMA net works).The effect of performance on cooperative terminals lo cated at different distances from an indoor cellular system is al so discussed.The proposed schemes provide higher signal-tonoise ratio(SNR)-around 1.6 dB and 2.6 dB gap at BER 10-2for amplify-and-forward(AF)and decode-and-forward(DF)cooperative protocols,respectively,when the cooperative termi nal is located 10 m from the WCDMA indoor system.Coopera tive protocols improve effective power utilization and,hence,improve performance and cell coverage of the mobile satellite network.展开更多
With the further reduction in cost and the increase in bandwidth, as well as the increase in internet applications, satellite communications are gradually shifting from a complementary role to becoming a fully integra...With the further reduction in cost and the increase in bandwidth, as well as the increase in internet applications, satellite communications are gradually shifting from a complementary role to becoming a fully integrated component of terrestrial communications networks. This paper firstly introduces the development of satellite communications, mobile communications and the global space-terrestrial integrated network. We then propose the functional architecture and network architecture for the integration of satellite communications and terrestrial mobile communications based on 5 G core networks. Finally, in order to support the network of the future, four key technologies are presented, a space-terrestrial integrated air interface design, a multi-band space-terrestrial integrated transmission waveform design, space-terrestrial integrated switching and routing technology, along with spectrum sharing and interference coordination technology, all necessary for the development of space-terrestrial integrated networks.展开更多
Taking into chief consideration the features of aviation nodes in satellite networks, such as high moving speed, long communication distance, and high connection frequency, this article proposes an aviation-oriented m...Taking into chief consideration the features of aviation nodes in satellite networks, such as high moving speed, long communication distance, and high connection frequency, this article proposes an aviation-oriented mobility management method for IP/low earth orbit (LEO) satellite networks. By introducing the concept of ground station real-time coverage area, the proposed method uses ground-station-based IP addressing method and cell paging scheme to decrease the frequency of IP binding update requests as well as the paging cost. In comparison with the paging mobile IP (P-MIP) method and the handover-independent IP mobility management method, as is verified by the mathematical analysis and simulation, the proposed method could decrease the management cost. It also possesses better ability to support the aviation nodes because it is subjected to fewer influences from increased node speeds and newly coming connection rates.展开更多
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit...In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.展开更多
At 07:51 Beijing time on December22,a LM-11 launch vehicle soared up from the Jiuquan Satellite Launch Center,placing the first satellite of the Hongyun Project into orbit.Developed by the China Academy of Launch Vehi...At 07:51 Beijing time on December22,a LM-11 launch vehicle soared up from the Jiuquan Satellite Launch Center,placing the first satellite of the Hongyun Project into orbit.Developed by the China Academy of Launch Vehicle Technology,LM-11 is the first solid launch vehicle among the LMlaunch vehicle family,as well as the only solid carrier rocket of China’s new-generation launch vehicles.It features flexible use,continuous and multiple launches with high-density.展开更多
The LM-2C launch vehicle lifted off from the Xichang Satellite Launch Center with the Yaogan 30-01 satellites (3 satel- lites with one rocket) at 12:21 Beijing time on September 29. The satellites en- tered their p...The LM-2C launch vehicle lifted off from the Xichang Satellite Launch Center with the Yaogan 30-01 satellites (3 satel- lites with one rocket) at 12:21 Beijing time on September 29. The satellites en- tered their preset orbits. It was the 25 I st flight of the LM series launch vehicle.展开更多
A new telecommunications satellite was launched from Xichang Launch Center on Nov. 30, 1994 and was put into a geosynchronous transfer orbit 24 minutes after its lift-off. It was launched by a Long-March 3A launch veh...A new telecommunications satellite was launched from Xichang Launch Center on Nov. 30, 1994 and was put into a geosynchronous transfer orbit 24 minutes after its lift-off. It was launched by a Long-March 3A launch vehicle, which was developed earlier in 1994 by the China Academy of Launch Vehicle Teehnology. The Long-展开更多
At 15:06 on May 10, China successfully sent Yaogan 14 satellite and Tiantuo 1 satellite into space with a Long March 4B rocket from the Taiyuan Satellite Launch Center. It marks another launch of two satellites by one...At 15:06 on May 10, China successfully sent Yaogan 14 satellite and Tiantuo 1 satellite into space with a Long March 4B rocket from the Taiyuan Satellite Launch Center. It marks another launch of two satellites by one rocket following the launch of two BeiDou (Compass) satellites by one rocket on April 30, and it is also the third consecutive launch mission conducted by CASC within 10 days.展开更多
基金supported by the National Key Research and Development Program of China under Grant 2020YFB1807700the National Natural Science Foundation of China(NSFC)under Grant(No.62201414,62201432)+2 种基金the Qinchuangyuan Project(OCYRCXM-2022-362)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University under Grant YJSJ24017the Guangzhou Science and Technology Program under Grant 202201011732。
文摘With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also significantly improve user experience.Integrating with the MEC and satellite networks,the network is empowered popular content ubiquitously and seamlessly.Addressing the research gap between multilayer satellite networks and MEC,we study the caching placement problem in this paper.Initially,we introduce a three-layer distributed network caching management architecture designed for efficient and flexible handling of large-scale networks.Considering the constraint on satellite capacity and content propagation delay,the cache placement problem is then formulated and transformed into a markov decision process(MDP),where the content coded caching mechanism is utilized to promote the efficiency of content delivery.Furthermore,a new generic metric,content delivery cost,is proposed to elaborate the performance of caching decision in large-scale networks.Then,we introduce a graph convolutional network(GCN)-based multi-agent advantage actor-critic(A2C)algorithm to optimize the caching decision.Finally,extensive simulations are conducted to evaluate the proposed algorithm in terms of content delivery cost and transferability.
基金National Natural Science Foundation of China (60532030)National Natural Science Foundation for Distinguished Young Scholars(60625102)
文摘For mobile satellite networks, an appropriate handover scheme should be devised to shorten handover delay with optimized application of network resources. By introducing the handover cost model of service, this article proposes a rerouting triggering scheme for path optimization after handover and a new minimum cost handover algorithm for mobile satellite networks. This algorithm ensures the quality of service (QoS) parameters, such as delay, during the handover and minimizes the handover costs. Simulation indicates that this algorithm is superior to other current algorithms in guaranteeing the QoS and decreasing handover costs.
基金This work was supported in part by the National Science Fund for Distinguished Young Scholars in China under grant 61425012the National Science Foundation Project in China under grant 61931005 and 61731017.
文摘Mobile communication standards have been developed into a new era of B5G and 6G.In recent years,low earth orbit(LEO)satellites and space Internet have become hot topics.The integrated satellite and terrestrial systems have been widely discussed by industries and academics,and even are expected to be applied in those huge constellations in construction.This paper points out the trends of two stages towards system integration of the terrestrial mobile communication and the satellite communications:to be compatible with 5G,and to be integrated within 6G.Based on analysis of the challenges of both stages,key technologies are thereafter analyzed in detail,covering both air interface currently discussed in 3GPP for B5G and also novel network architecture and related transmission technologies toward future 6G.
文摘This paper presents a novel blind adaptive noncoherent decorrelative multiuser detector for nonlinearly modulated satellite mobile Code Division Multiple Access (CDMA) systems. By using the known signature waveforms of the counterpart earth station in the blind adaptive multiuser detector, the system performance has been improved obviously. The computation results about the convergence properties of the new detector and the previous detectors demonstrate that the proposed multiuser detector has better performance than previous multiuser detectors for nonlinearly modulated CDMA systems.
文摘This paper presents a propagation model for land-mobile-satellite (LMS) wideband radio channel in built-up environment. The model characterizes the behavior of the radio channel, under shadowing and multipath effects due to buildings, with variation of the elevation angle of the satellite. The wideband parameters (coherent bandwidth and time delay spreading) for LMS channel, in residential and urban environments, are computed. These parameters can be considered as a measure of the amount of ISI (inter-symbol interference) of the radio channel, which distorts the received signal and accordingly increases the bit error rate. The calculated values for these parameters using our model, show very good agreement with the corresponding measured ones, which accordingly shows the validity of the developed model for radio channel design in satellite mobile communication systems.
文摘This paper presents a statistical model for land mobile satellite channel based on emprical fomulas, which implies that the received signal consists of Line of sight and Rayleigh components, and only LOS component is shadowed, the emprical fomulas and coefficients which make the model valid over a wide range of elevation angles, and analyses the bit error rate performance of narrow band BPSK.
基金supported by the National Natural Science Foundation of China(61301105)the China Postdoctoral Science Foundation Funded Project(2013M531351)
文摘An accurate, complete and realistic channel model is re- quired to accurately analyze the system performance of a multiple input multiple output (MIMO) broadband satellite mobile commu- nication system with dual-orthogonal polarized antennas (DPAs). In most current studies, the channel characteristic matrix (CCM) is always formed by an independent identical distribution (i.i.d) model of Rayleigh or Rice distribution and nevertheless incomplete and inaccurate to describe a broadband dual-orthogonal polarized MIMO land mobile satellite (BDM-LMS) channel. This paper fo- cuses on establishing the BDM-LMS channel statistical model, which combines the 4-state broadband LMS channel model, the time selective fading features, the channel covariance information (CCI) channel model and polarization correlations between an- tennas. The modeling steps of the channel model are introduced. The main emphasis is placed on the effects of the factors, such as antenna numbers, temporal correlations, terminal environments, elevation angles and polarization correlations between the DPAs, on the channel capacity in the BDM-LMS system. Many simulation results are provided to illustrate the effects of these factors through comparisons of the transmit rate, ergodic capacity and outage capacity with different factor values. Besides, the MIMO outage capacity advantages, which indicate the benefits of MIMO com- pared with a single input single output (SISO) system under the same channel condition, are also studied under i.i.d or BDM-LMS channel.
文摘The paper describes the development of mobile communication first and then points out that it is necessary for China to develop satellite mobile communication after comparing the cellular mobile communication with the satellite mobile communication. After comparing the geostationary satellite system with the low earth orbit satellite mobile communication system, as well as the single-beam system with the multibeams system, both used in satellite mobile communication, we suggest that China, according to its economic status and level of satellite technology, should develop a geostationary multibeam satellite for its domestic mobile communication.
基金supported by the National Natural Science Foundation of China (61074023,60975075)the Natural Science Foundation of Jiangsu Province of China (BK2008404)+1 种基金the Science and Technology Pillar Program of Jiangsu Province of China (BE2009160)the Innovation Project of Graduate Students of Jiangsu Province of China(CXZZ 0254)
文摘The tracking and stable control of a typical shipmounted mobile satellite communication system(MSCS) is studied.Unlike the former studies based on simplified single-axis models,a tri-axis nonlinear model including the kinematic and dynamic features of the MSCS is used as the control object.An adaptive robust controller with trajectory planning is designed to deal with large parametric uncertainties and uncertain nonlinearities of the system.A theoretic performance result is given and proved.The designed adaptive robust controller and other two traditional controllers are tested in the comparative simulations under three different situations.The simulation results show the tracking and stable validity of the proposed controller.
基金Supported by the National Natural Science Foundation of China (No. 60972061,60972062,and 61032004)the National High Technology Research and Development Program of China ("863" Program) (No. 2008AA12A204)+1 种基金the Natural Science Foundation of Jiangsu Province (No.BK2009060)the "Triple Three" High Level Talent Development Plan of Jiangsu Province
文摘It is a challenging problem to design a high performance modulation for mobile satellite communications due to the limited power and bandwidth resource.The paper improves Feher patented Quadrature Phase Shift Keying(FQPSK) by redefining the waveform.The novel FQPSK,with con-stant envelope,can be used to improve the power efficiency and frequency efficiency of mobile satellite communication.The study shows that the improved FQPSK outperforms conventional FQPSK over AWGN and is immune to the non-linearity of high power amplifier.At last,the impact of flat fading and multi-path fading of channel on the BER performance of improved modulation is analyzed.
文摘Given that satellite mobile channel is a time-varying channel,Adaptive Modulation and Coding(AMC) was proposed to provide robust and spectrally efficient transmission over satellite mobile channel.Three different kinds of channel environment were considered in this paper:the urban area,the rural area,and the open space.Four combinations of modulation and coding were designed to meet reliable communication on time-varying channel,and spectral efficiency and system throughput of these three kinds of channel environment were simulated.Based on the simulation results,this paper analysed the results and compared the performances of AMC with non-AMC system in these three kinds of channel environment.At last,we come to the conclusions:a system with AMC can achieve higher spectral efficiency and better system throughput;and the spectral efficiency and system throughput of AMC system will be higher on better satellite mobile channel.
文摘A mobile satellite indoor signal is proposed to model perfor mance of cooperative communication protocols and maximal ra tio combining.Cooperative diversity can improve the reliability of satellite system and increase data speed or expand cell radi us by lessening the effects of fading.Performance is determined by measured bit error rates(BERs)in different types of coopera tive protocols and indoor systems(e.g.GSM and WCDMA net works).The effect of performance on cooperative terminals lo cated at different distances from an indoor cellular system is al so discussed.The proposed schemes provide higher signal-tonoise ratio(SNR)-around 1.6 dB and 2.6 dB gap at BER 10-2for amplify-and-forward(AF)and decode-and-forward(DF)cooperative protocols,respectively,when the cooperative termi nal is located 10 m from the WCDMA indoor system.Coopera tive protocols improve effective power utilization and,hence,improve performance and cell coverage of the mobile satellite network.
文摘With the further reduction in cost and the increase in bandwidth, as well as the increase in internet applications, satellite communications are gradually shifting from a complementary role to becoming a fully integrated component of terrestrial communications networks. This paper firstly introduces the development of satellite communications, mobile communications and the global space-terrestrial integrated network. We then propose the functional architecture and network architecture for the integration of satellite communications and terrestrial mobile communications based on 5 G core networks. Finally, in order to support the network of the future, four key technologies are presented, a space-terrestrial integrated air interface design, a multi-band space-terrestrial integrated transmission waveform design, space-terrestrial integrated switching and routing technology, along with spectrum sharing and interference coordination technology, all necessary for the development of space-terrestrial integrated networks.
基金National Natural Science Foundation of China (60532030)National Natural Science Foundation for Distinguished Young Scholars (60625102)
文摘Taking into chief consideration the features of aviation nodes in satellite networks, such as high moving speed, long communication distance, and high connection frequency, this article proposes an aviation-oriented mobility management method for IP/low earth orbit (LEO) satellite networks. By introducing the concept of ground station real-time coverage area, the proposed method uses ground-station-based IP addressing method and cell paging scheme to decrease the frequency of IP binding update requests as well as the paging cost. In comparison with the paging mobile IP (P-MIP) method and the handover-independent IP mobility management method, as is verified by the mathematical analysis and simulation, the proposed method could decrease the management cost. It also possesses better ability to support the aviation nodes because it is subjected to fewer influences from increased node speeds and newly coming connection rates.
文摘In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.
文摘At 07:51 Beijing time on December22,a LM-11 launch vehicle soared up from the Jiuquan Satellite Launch Center,placing the first satellite of the Hongyun Project into orbit.Developed by the China Academy of Launch Vehicle Technology,LM-11 is the first solid launch vehicle among the LMlaunch vehicle family,as well as the only solid carrier rocket of China’s new-generation launch vehicles.It features flexible use,continuous and multiple launches with high-density.
文摘The LM-2C launch vehicle lifted off from the Xichang Satellite Launch Center with the Yaogan 30-01 satellites (3 satel- lites with one rocket) at 12:21 Beijing time on September 29. The satellites en- tered their preset orbits. It was the 25 I st flight of the LM series launch vehicle.
文摘A new telecommunications satellite was launched from Xichang Launch Center on Nov. 30, 1994 and was put into a geosynchronous transfer orbit 24 minutes after its lift-off. It was launched by a Long-March 3A launch vehicle, which was developed earlier in 1994 by the China Academy of Launch Vehicle Teehnology. The Long-
文摘At 15:06 on May 10, China successfully sent Yaogan 14 satellite and Tiantuo 1 satellite into space with a Long March 4B rocket from the Taiyuan Satellite Launch Center. It marks another launch of two satellites by one rocket following the launch of two BeiDou (Compass) satellites by one rocket on April 30, and it is also the third consecutive launch mission conducted by CASC within 10 days.