Background:Maternal and child health(MCH)remains a significant public health concern globally despite previous efforts made to improve MCH services.Initiatives such as antenatal care,postnatal care services exclusive ...Background:Maternal and child health(MCH)remains a significant public health concern globally despite previous efforts made to improve MCH services.Initiatives such as antenatal care,postnatal care services exclusive breastfeeding,child vaccination and supplements have been rolled out to improve MCH outcomes.However,inadequate maternal healthcare,socioeconomic factors,obstetric haemorrhaging,complications of hypertension during pregnancy,lack of maternal information,poor universal health coverage and uptake of MCH services exacerbate maternal mortality and child mortality rates,especially in resource-constrained areas in many sub-Saharan African countries including South Africa.Objective:This study aimed to review mobile health(mHealth)interventions deployed to improve maternal and child health outcomes.Methods:The study adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analyses model to search and retrieve relevant literature from reputable,prominent electronic databases(Google Scholar,Scopus,PubMed,Embase,CINAHL,Web of Science,etc.).A total of 26 papers were selected and analyzed.Results:The findings revealed several mHealth interventions such as MomConnect,Mobile Alliance for Maternal Action,NurseConnect,ChildConnect,CommCare,Road to Health Application and Philani Mobile Video Intervention for Exclusive Breastfeeding have been utilized by healthcare workers and women to improve access to MCH services.However,inadequate digital infrastructure,digital divide,resistance to change,inadequate funding,language barriers,short message service and data costs,lack of digital skills and support,compatibility,scalability and interoperability issues,legislative and policy compliance,lack of mHealth awareness,data security and privacy concerns hinder uptake and utilisation of mHealth interventions.There is a need to scale up and sustain mHealth interventions and update existing regulatory framework,policies and strategies.Conclusion:mHealth interventions offer unprecedented opportunities to improve access to maternal information and substantially improve maternal and child health services.Stakeholder engagement and the development of sustainable funding strategies are important for successfully implementing and scaling mHealth projects while addressing existing and emerging key issues.展开更多
BACKGROUND The glycemic control of children with type 1 diabetes(T1D)may be influenced by the economic status of their parents.AIM To investigate the association between parental economic status and blood glucose leve...BACKGROUND The glycemic control of children with type 1 diabetes(T1D)may be influenced by the economic status of their parents.AIM To investigate the association between parental economic status and blood glucose levels of children with T1D using a mobile health application.METHODS Data from children with T1D in China's largest T1D online community,Tang-TangQuan■.Blood glucose levels were uploaded every three months and parental economic status was evaluated based on annual household income.Children were divided into three groups:Low-income(<30000 Yuan),middle-income(30000-100000 Yuan),and high-income(>100000 yuan)(1 Yuan=0.145 United States Dollar approximately).Blood glucose levels were compared among the groups and associations were explored using Spearman’s correlation analysis and multivariable logistic regression.RESULTS From September 2015 to August 2022,1406 eligible children with T1D were included(779 female,55.4%).Median age was 8.1 years(Q1-Q3:4.6-11.6)and duration of T1D was 0.06 years(0.02-0.44).Participants were divided into three groups:Low-income(n=320),middle-income(n=724),and high-income(n=362).Baseline hemoglobin A1c(HbA1c)levels were comparable among the three groups(P=0.072).However,at month 36,the low-income group had the highest HbA1c levels(P=0.036).Within three years after registration,glucose levels increased significantly in the low-income group but not in the middle-income and high-income groups.Parental economic status was negatively correlated with pre-dinner glucose(r=-0.272,P=0.012).After adjustment for confounders,parental economic status remained a significant factor related to pre-dinner glucose levels(odds ratio=13.02,95%CI:1.99 to 126.05,P=0.002).CONCLUSION The blood glucose levels of children with T1D were negatively associated with parental economic status.It is suggested that parental economic status should be taken into consideration in the management of T1D for children.展开更多
Mobile young white-collar workers not only have the characteristics of mobile young people,but also have the characteristics of general white-collar workers.Under the influence of both,their mental health may be suffe...Mobile young white-collar workers not only have the characteristics of mobile young people,but also have the characteristics of general white-collar workers.Under the influence of both,their mental health may be suffering from“double disadvantage”.So,based on an ecological model of the stress process,this paper tries to use the data of the questionnaire on the mental health of mobile young white-collar workers in Zhejiang Province to explore the influence of some factors in the middle workplace and residence place on the mental health of micro individuals.The results show that:(1)The working environment with high control and low freedom and the workplace discrimination against the mobile status will have a negative impact on the mental health of mobile young white-collar workers;(2)Financial anxiety in daily life will lead to a decline in the mental health level of mobile young white-collar workers;(3)Good organizational support and neighborhood social relations can significantly relieve life pressure,so as to effectively improve the mental health of mobile young white-collar workers.It can be seen that we also need to pay more attention to the mental health of mobile young white-collar workers in order to improve their situation.展开更多
Purpose: This research aims to evaluate the potential threats to patient privacy and confidentiality posed by mHealth applications on mobile devices. Methodology: A comprehensive literature review was conducted, selec...Purpose: This research aims to evaluate the potential threats to patient privacy and confidentiality posed by mHealth applications on mobile devices. Methodology: A comprehensive literature review was conducted, selecting eighty-eight articles published over the past fifteen years. The study assessed data gathering and storage practices, regulatory adherence, legal structures, consent procedures, user education, and strategies to mitigate risks. Results: The findings reveal significant advancements in technologies designed to safeguard privacy and facilitate the widespread use of mHealth apps. However, persistent ethical issues related to privacy remain largely unchanged despite these technological strides.展开更多
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow...By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.展开更多
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ...In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.展开更多
Regular physical activity(PA)is known to enhance multifaceted health benefits,including both physical and mental health.However,traditional in-person physical activity programs have drawbacks,including time constraints...Regular physical activity(PA)is known to enhance multifaceted health benefits,including both physical and mental health.However,traditional in-person physical activity programs have drawbacks,including time constraints for busy people.Although evidence suggests positive impacts on mental health through mobile-based physical activity,effects of accumulated short bouts of physical activity using mobile devices are unexplored.Thus,this study aims to investigate these effects,focusing on depression,perceived stress,and negative affectivity among South Korean college students.Forty-six healthy college students were divided into the accumulated group(n=23,female=47.8%)and control group(n=23,female=47.6%).The accumulated group engaged in mobile-based physical activity,following guidelines to accumulate a minimum of two times per day and three times a week.Sessions were divided into short bouts,ensuing each bout lasted at least 10 min.The control group did not engage in any specific physical activity.The data analysis involved comparing the scores of the intervention and control groups using several statistical techniques,such as independent sample t-test,paired sample t-tests,and 2(time)×2(group)repeated measures analysis of variance.The demographic characteristics at the pre-test showed no statistically significant differences between the groups.The accumulated group had significant decreases in depression(t_(40)=2.59,p=0.013,Cohen’s D=0.84)and perceived stress(t_(40)=2.06,p=0.046,Cohen’s D=0.56)from the pre-to post-test.The control group exhibited no statistically significant differences in any variables.Furthermore,there were significant effects of time on depression scores(F1,36=4.77,p=0.036,η_(p)^(2)=0.12)while significant interaction effects were also observed for depression(F_(1,36)=6.59,p=0.015,η_(p)^(2)=0.16).This study offers informative insights into the potential advantages of mobile-based physical activity programs with accumulated periods for enhancing mental health,specifically in relation to depression.This study illuminates the current ongoing discussions on efficient approaches to encourage mobile-based physical activity and improve mental well-being,addressing various lifestyles and busy schedules.展开更多
Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G...Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party app...Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party apps, it has become an increasingly important issue for end-users and service providers to ensure that both the devices and the underlying network are secure. People will become more reliant on applications such as SMS, MMS, Internet Access, Online Transactions, and so on due to such features and capabilities. Thousands of devices ranging from low-cost phones to high-end luxury phones are powered by the Android operating system, which has dominated the smartphone marketplace. It is about making it possible for people from all socioeconomic backgrounds to get and use mobile devices in their daily activities. In response to this growing popularity, the number of new applications introduced to the Android market has skyrocketed. The recent appearance of a wide range of mobile malware has caught the attention of security professionals and scholars alike. In light of the ongoing expansion of the mobile phone industry, the likelihood of it being used in criminal activities will only continue to rise in the future. This article reviews the literature on malware detection and prevention in Android mobile devices, analyzes the existing literature on major studies and tasks, and covers articles, journals, and digital resources such as Internet security publications, scientific studies, and conferences.展开更多
Background and Objective: With the popularity and widespread use of mobile phones, the effects of mobile phone dependence and addiction on individuals’ physical and mental health have attracted more and more attentio...Background and Objective: With the popularity and widespread use of mobile phones, the effects of mobile phone dependence and addiction on individuals’ physical and mental health have attracted more and more attention. The present study aims to analyze the current state of mobile phone addiction and its impact on sleep quality within the population, while also exploring the influence of related factors on sleep quality. Ultimately, this research will provide a scientific foundation for targeted intervention measures and strategies. Methods: A total of 253 permanent residents in Nanjing were randomly selected as study subjects. The Mobile Phone Addiction Index (MPAI) and Pittsburgh Sleep Quality Index (PSQI) were used to evaluate the degree of smartphone addiction and sleep quality of the study subjects. Body mass index (BMI) was measured according to standardized procedures. Independent sample t-test, Chi-square test, rank sum test and multiple linear regression were used to analyze the correlation between mobile phone addiction and sleep quality, and P Results: 117 people (46.2%) were addicted to mobile phones. Chi-square test showed that the rate of mobile phone addiction in drinking group was significantly higher than that in non-drinking group (P P P P P P P P P P Conclusion: Mobile phone addiction may lead to shorter sleep duration and reduce sleep efficiency. The withdrawal of mobile phone addiction may have a negative impact on sleep quality. According to the characteristics of the population, appropriate comprehensive intervention measures should be taken to build an effective evaluation system, so as to reduce the impact of mobile phone addiction and withdrawal problems on sleep and improve sleep quality.展开更多
In this paper,we concentrate on a reconfigurable intelligent surface(RIS)-aided mobile edge computing(MEC)system to improve the offload efficiency with moving user equipments(UEs).We aim to minimize the energy consump...In this paper,we concentrate on a reconfigurable intelligent surface(RIS)-aided mobile edge computing(MEC)system to improve the offload efficiency with moving user equipments(UEs).We aim to minimize the energy consumption of all UEs by jointly optimizing the discrete phase shift of RIS,UEs’transmitting power,computing resources allocation,and the UEs’task offloading strategies for local computing and offloading.The formulated problem is a sequential decision making across multiple coherent time slots.Furthermore,the mobility of UEs brings uncertainties into the decision-making process.To cope with this challenging problem,the deep reinforcement learning-based Soft Actor-Critic(SAC)algorithm is first proposed to effectively optimize the discrete phase of RIS and the UEs’task offloading strategies.Then,the transmitting power and computing resource allocation can be determined based on the action.Numerical results demonstrate that the proposed algorithm can be trained more stably and perform approximately 14%lower than the deep deterministic policy gradient benchmark in terms of energy consumption.展开更多
Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC a...Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC and blockchain,processing users’tasks and then uploading the task related information to the blockchain.That is,each edge server runs both users’offloaded tasks and blockchain tasks simultaneously.Note that there is a trade-off between the resource allocation for MEC and blockchain tasks.Therefore,the allocation of the resources of edge servers to the blockchain and theMEC is crucial for the processing delay of blockchain-based MEC.Most of the existing research tackles the problem of resource allocation in either blockchain or MEC,which leads to unfavorable performance of the blockchain-based MEC system.In this paper,we study how to allocate the computing resources of edge servers to the MEC and blockchain tasks with the aimtominimize the total systemprocessing delay.For the problem,we propose a computing resource Allocation algorithmfor Blockchain-based MEC(ABM)which utilizes the Slater’s condition,Karush-Kuhn-Tucker(KKT)conditions,partial derivatives of the Lagrangian function and subgradient projection method to obtain the solution.Simulation results show that ABM converges and effectively reduces the processing delay of blockchain-based MEC.展开更多
In the groundbreaking study “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems,” authored by Zaki Ali Bayashot, the transformative role of artificial intelligence (AI) in urban development is metic...In the groundbreaking study “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems,” authored by Zaki Ali Bayashot, the transformative role of artificial intelligence (AI) in urban development is meticulously examined. This comprehensive research delineates the multifaceted ways in which AI-powered mobile applications can significantly enhance the efficiency, sustainability, and livability of urban environments, marking a pivotal step towards the realization of smart cities globally. Bayashot meticulously outlines the critical areas where AI-powered apps offer unprecedented advantages, including urban mobility, public safety, energy management, and environmental monitoring. By leveraging AI’s capabilities, these applications not only streamline city operations but also foster a more sustainable interaction between city dwellers and their environment. The paper emphasizes the importance of data-driven decision-making in urban planning, showcasing how AI analytics can predict and mitigate traffic congestion, optimize energy consumption, and enhance emergency response strategies. The author also explores the social implications of AI in urban settings, highlighting the potential for these technologies to bridge the gap between government entities and citizens. Through engaging case studies, Bayashot demonstrates how participatory governance models, enabled by AI apps, can promote transparency, accountability, and citizen engagement in urban management. A significant contribution of this research is its focus on the challenges and opportunities presented by the integration of AI into smart city ecosystems. Bayashot discusses the technical, ethical, and privacy concerns associated with AI applications, advocating for a balanced approach that ensures technological advancements do not come at the expense of civil liberties. The study calls for robust regulatory frameworks to govern the use of AI in public spaces, emphasizing the need for ethical AI practices that respect privacy and promote inclusivity. Furthermore, Bayashot’s research underscores the necessity of cross-disciplinary collaboration in the development and implementation of AI technologies in urban contexts. By bringing together experts from information technology, urban planning, environmental science, and social sciences, the author argues for a holistic approach to smart city development. This interdisciplinary strategy ensures that AI applications are not only technologically sound but also socially and environmentally responsible. The paper concludes with a visionary outlook on the future of smart cities, posited on the seamless integration of AI technologies. Bayashot envisions a world where AI-powered mobile apps not only facilitate smoother urban operations but also empower citizens to actively participate in the shaping of their urban environments. This research serves as a critical call to action for policymakers, technologists, and urban planners to embrace AI as a tool for creating more sustainable, efficient, and inclusive cities. By presenting a detailed analysis of the current state of AI in urban development, coupled with practical insights and forward-looking recommendations, “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems” stands as a seminal work that is poised to inspire and guide the evolution of urban landscapes worldwide. Its comprehensive exploration of the subject matter, combined with its impactful conclusions, make it a must-read for anyone involved in the field of smart city development, AI technology, or urban policy-making.展开更多
The RPL(IPv6 Routing Protocol for Low-Power and Lossy Networks)protocol is essential for efficient communi-cation within the Internet of Things(IoT)ecosystem.Despite its significance,RPL’s susceptibility to attacks r...The RPL(IPv6 Routing Protocol for Low-Power and Lossy Networks)protocol is essential for efficient communi-cation within the Internet of Things(IoT)ecosystem.Despite its significance,RPL’s susceptibility to attacks remains a concern.This paper presents a comprehensive simulation-based analysis of the RPL protocol’s vulnerability to the decreased rank attack in both static andmobilenetwork environments.We employ the Random Direction Mobility Model(RDM)for mobile scenarios within the Cooja simulator.Our systematic evaluation focuses on critical performance metrics,including Packet Delivery Ratio(PDR),Average End to End Delay(AE2ED),throughput,Expected Transmission Count(ETX),and Average Power Consumption(APC).Our findings illuminate the disruptive impact of this attack on the routing hierarchy,resulting in decreased PDR and throughput,increased AE2ED,ETX,and APC.These results underscore the urgent need for robust security measures to protect RPL-based IoT networks.Furthermore,our study emphasizes the exacerbated impact of the attack in mobile scenarios,highlighting the evolving security requirements of IoT networks.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encoun...Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encounter challenges when dealing with abnormal data flow nodes,leading to decreased allocation accuracy and efficiency.To address these issues,this study proposes a novel two-part invalid detection task allocation framework.In the first step,an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data.Compared to the baseline method,the model achieves an approximately 4%increase in the F1 value on the public dataset.In the second step of the framework,task allocation modeling is performed using a twopart graph matching method.This phase introduces a P-queue KM algorithm that implements a more efficient optimization strategy.The allocation efficiency is improved by approximately 23.83%compared to the baseline method.Empirical results confirm the effectiveness of the proposed framework in detecting abnormal data nodes,enhancing allocation precision,and achieving efficient allocation.展开更多
With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protecti...With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protection of mobile users’privacy information.At present,mobile user authenticationmethods based on humancomputer interaction have been extensively studied due to their advantages of high precision and non-perception,but there are still shortcomings such as low data collection efficiency,untrustworthy participating nodes,and lack of practicability.To this end,this paper proposes a privacy-enhanced mobile user authentication method with motion sensors,which mainly includes:(1)Construct a smart contract-based private chain and federated learning to improve the data collection efficiency of mobile user authentication,reduce the probability of the model being bypassed by attackers,and reduce the overhead of data centralized processing and the risk of privacy leakage;(2)Use certificateless encryption to realize the authentication of the device to ensure the credibility of the client nodes participating in the calculation;(3)Combine Variational Mode Decomposition(VMD)and Long Short-TermMemory(LSTM)to analyze and model the motion sensor data of mobile devices to improve the accuracy of model certification.The experimental results on the real environment dataset of 1513 people show that themethod proposed in this paper can effectively resist poisoning attacks while ensuring the accuracy and efficiency of mobile user authentication.展开更多
文摘Background:Maternal and child health(MCH)remains a significant public health concern globally despite previous efforts made to improve MCH services.Initiatives such as antenatal care,postnatal care services exclusive breastfeeding,child vaccination and supplements have been rolled out to improve MCH outcomes.However,inadequate maternal healthcare,socioeconomic factors,obstetric haemorrhaging,complications of hypertension during pregnancy,lack of maternal information,poor universal health coverage and uptake of MCH services exacerbate maternal mortality and child mortality rates,especially in resource-constrained areas in many sub-Saharan African countries including South Africa.Objective:This study aimed to review mobile health(mHealth)interventions deployed to improve maternal and child health outcomes.Methods:The study adopted the Preferred Reporting Items for Systematic Reviews and Meta-Analyses model to search and retrieve relevant literature from reputable,prominent electronic databases(Google Scholar,Scopus,PubMed,Embase,CINAHL,Web of Science,etc.).A total of 26 papers were selected and analyzed.Results:The findings revealed several mHealth interventions such as MomConnect,Mobile Alliance for Maternal Action,NurseConnect,ChildConnect,CommCare,Road to Health Application and Philani Mobile Video Intervention for Exclusive Breastfeeding have been utilized by healthcare workers and women to improve access to MCH services.However,inadequate digital infrastructure,digital divide,resistance to change,inadequate funding,language barriers,short message service and data costs,lack of digital skills and support,compatibility,scalability and interoperability issues,legislative and policy compliance,lack of mHealth awareness,data security and privacy concerns hinder uptake and utilisation of mHealth interventions.There is a need to scale up and sustain mHealth interventions and update existing regulatory framework,policies and strategies.Conclusion:mHealth interventions offer unprecedented opportunities to improve access to maternal information and substantially improve maternal and child health services.Stakeholder engagement and the development of sustainable funding strategies are important for successfully implementing and scaling mHealth projects while addressing existing and emerging key issues.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences,No.XDB38010100the Natural Science Research Project of Anhui Educational Committee,No.2023AH040398+1 种基金Emergency Technological Research Project for COVID-19Science and Technology Projects in Guangzhou,No.2023A04J1087.
文摘BACKGROUND The glycemic control of children with type 1 diabetes(T1D)may be influenced by the economic status of their parents.AIM To investigate the association between parental economic status and blood glucose levels of children with T1D using a mobile health application.METHODS Data from children with T1D in China's largest T1D online community,Tang-TangQuan■.Blood glucose levels were uploaded every three months and parental economic status was evaluated based on annual household income.Children were divided into three groups:Low-income(<30000 Yuan),middle-income(30000-100000 Yuan),and high-income(>100000 yuan)(1 Yuan=0.145 United States Dollar approximately).Blood glucose levels were compared among the groups and associations were explored using Spearman’s correlation analysis and multivariable logistic regression.RESULTS From September 2015 to August 2022,1406 eligible children with T1D were included(779 female,55.4%).Median age was 8.1 years(Q1-Q3:4.6-11.6)and duration of T1D was 0.06 years(0.02-0.44).Participants were divided into three groups:Low-income(n=320),middle-income(n=724),and high-income(n=362).Baseline hemoglobin A1c(HbA1c)levels were comparable among the three groups(P=0.072).However,at month 36,the low-income group had the highest HbA1c levels(P=0.036).Within three years after registration,glucose levels increased significantly in the low-income group but not in the middle-income and high-income groups.Parental economic status was negatively correlated with pre-dinner glucose(r=-0.272,P=0.012).After adjustment for confounders,parental economic status remained a significant factor related to pre-dinner glucose levels(odds ratio=13.02,95%CI:1.99 to 126.05,P=0.002).CONCLUSION The blood glucose levels of children with T1D were negatively associated with parental economic status.It is suggested that parental economic status should be taken into consideration in the management of T1D for children.
基金the National Social Science Fund of China(Grant No.20BTJ005).
文摘Mobile young white-collar workers not only have the characteristics of mobile young people,but also have the characteristics of general white-collar workers.Under the influence of both,their mental health may be suffering from“double disadvantage”.So,based on an ecological model of the stress process,this paper tries to use the data of the questionnaire on the mental health of mobile young white-collar workers in Zhejiang Province to explore the influence of some factors in the middle workplace and residence place on the mental health of micro individuals.The results show that:(1)The working environment with high control and low freedom and the workplace discrimination against the mobile status will have a negative impact on the mental health of mobile young white-collar workers;(2)Financial anxiety in daily life will lead to a decline in the mental health level of mobile young white-collar workers;(3)Good organizational support and neighborhood social relations can significantly relieve life pressure,so as to effectively improve the mental health of mobile young white-collar workers.It can be seen that we also need to pay more attention to the mental health of mobile young white-collar workers in order to improve their situation.
文摘Purpose: This research aims to evaluate the potential threats to patient privacy and confidentiality posed by mHealth applications on mobile devices. Methodology: A comprehensive literature review was conducted, selecting eighty-eight articles published over the past fifteen years. The study assessed data gathering and storage practices, regulatory adherence, legal structures, consent procedures, user education, and strategies to mitigate risks. Results: The findings reveal significant advancements in technologies designed to safeguard privacy and facilitate the widespread use of mHealth apps. However, persistent ethical issues related to privacy remain largely unchanged despite these technological strides.
基金supported in part by the National Natural Science Foundation of China under Grant 62171465,62072303,62272223,U22A2031。
文摘By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金This work was supported by the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.
基金supported by the Bio&Medical Technology Development Program of the National Research Foundation(NRF)funded by the Korean government(MSIT)(NRF-2021M3A9E4080780)Hankuk University of Foreign Studies(2023).
文摘Regular physical activity(PA)is known to enhance multifaceted health benefits,including both physical and mental health.However,traditional in-person physical activity programs have drawbacks,including time constraints for busy people.Although evidence suggests positive impacts on mental health through mobile-based physical activity,effects of accumulated short bouts of physical activity using mobile devices are unexplored.Thus,this study aims to investigate these effects,focusing on depression,perceived stress,and negative affectivity among South Korean college students.Forty-six healthy college students were divided into the accumulated group(n=23,female=47.8%)and control group(n=23,female=47.6%).The accumulated group engaged in mobile-based physical activity,following guidelines to accumulate a minimum of two times per day and three times a week.Sessions were divided into short bouts,ensuing each bout lasted at least 10 min.The control group did not engage in any specific physical activity.The data analysis involved comparing the scores of the intervention and control groups using several statistical techniques,such as independent sample t-test,paired sample t-tests,and 2(time)×2(group)repeated measures analysis of variance.The demographic characteristics at the pre-test showed no statistically significant differences between the groups.The accumulated group had significant decreases in depression(t_(40)=2.59,p=0.013,Cohen’s D=0.84)and perceived stress(t_(40)=2.06,p=0.046,Cohen’s D=0.56)from the pre-to post-test.The control group exhibited no statistically significant differences in any variables.Furthermore,there were significant effects of time on depression scores(F1,36=4.77,p=0.036,η_(p)^(2)=0.12)while significant interaction effects were also observed for depression(F_(1,36)=6.59,p=0.015,η_(p)^(2)=0.16).This study offers informative insights into the potential advantages of mobile-based physical activity programs with accumulated periods for enhancing mental health,specifically in relation to depression.This study illuminates the current ongoing discussions on efficient approaches to encourage mobile-based physical activity and improve mental well-being,addressing various lifestyles and busy schedules.
基金This work was supported by the National Science and Technology Council,Taiwan,under Project NSTC 112-2221-E-029-015.
文摘Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
文摘Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party apps, it has become an increasingly important issue for end-users and service providers to ensure that both the devices and the underlying network are secure. People will become more reliant on applications such as SMS, MMS, Internet Access, Online Transactions, and so on due to such features and capabilities. Thousands of devices ranging from low-cost phones to high-end luxury phones are powered by the Android operating system, which has dominated the smartphone marketplace. It is about making it possible for people from all socioeconomic backgrounds to get and use mobile devices in their daily activities. In response to this growing popularity, the number of new applications introduced to the Android market has skyrocketed. The recent appearance of a wide range of mobile malware has caught the attention of security professionals and scholars alike. In light of the ongoing expansion of the mobile phone industry, the likelihood of it being used in criminal activities will only continue to rise in the future. This article reviews the literature on malware detection and prevention in Android mobile devices, analyzes the existing literature on major studies and tasks, and covers articles, journals, and digital resources such as Internet security publications, scientific studies, and conferences.
文摘Background and Objective: With the popularity and widespread use of mobile phones, the effects of mobile phone dependence and addiction on individuals’ physical and mental health have attracted more and more attention. The present study aims to analyze the current state of mobile phone addiction and its impact on sleep quality within the population, while also exploring the influence of related factors on sleep quality. Ultimately, this research will provide a scientific foundation for targeted intervention measures and strategies. Methods: A total of 253 permanent residents in Nanjing were randomly selected as study subjects. The Mobile Phone Addiction Index (MPAI) and Pittsburgh Sleep Quality Index (PSQI) were used to evaluate the degree of smartphone addiction and sleep quality of the study subjects. Body mass index (BMI) was measured according to standardized procedures. Independent sample t-test, Chi-square test, rank sum test and multiple linear regression were used to analyze the correlation between mobile phone addiction and sleep quality, and P Results: 117 people (46.2%) were addicted to mobile phones. Chi-square test showed that the rate of mobile phone addiction in drinking group was significantly higher than that in non-drinking group (P P P P P P P P P P Conclusion: Mobile phone addiction may lead to shorter sleep duration and reduce sleep efficiency. The withdrawal of mobile phone addiction may have a negative impact on sleep quality. According to the characteristics of the population, appropriate comprehensive intervention measures should be taken to build an effective evaluation system, so as to reduce the impact of mobile phone addiction and withdrawal problems on sleep and improve sleep quality.
基金supported by the National Natural Science Foundation of China(No.62101277 and No.U20B2039)the Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu(No.BK20212001)。
文摘In this paper,we concentrate on a reconfigurable intelligent surface(RIS)-aided mobile edge computing(MEC)system to improve the offload efficiency with moving user equipments(UEs).We aim to minimize the energy consumption of all UEs by jointly optimizing the discrete phase shift of RIS,UEs’transmitting power,computing resources allocation,and the UEs’task offloading strategies for local computing and offloading.The formulated problem is a sequential decision making across multiple coherent time slots.Furthermore,the mobility of UEs brings uncertainties into the decision-making process.To cope with this challenging problem,the deep reinforcement learning-based Soft Actor-Critic(SAC)algorithm is first proposed to effectively optimize the discrete phase of RIS and the UEs’task offloading strategies.Then,the transmitting power and computing resource allocation can be determined based on the action.Numerical results demonstrate that the proposed algorithm can be trained more stably and perform approximately 14%lower than the deep deterministic policy gradient benchmark in terms of energy consumption.
基金supported by the Key Research and Development Project in Anhui Province of China(Grant No.202304a05020059)the Fundamental Research Funds for the Central Universities of China(Grant No.PA2023GDSK0055)the Project of Anhui Province Economic and Information Bureau(Grant No.JB20099).
文摘Users and edge servers are not fullymutually trusted inmobile edge computing(MEC),and hence blockchain can be introduced to provide trustableMEC.In blockchain-basedMEC,each edge server functions as a node in bothMEC and blockchain,processing users’tasks and then uploading the task related information to the blockchain.That is,each edge server runs both users’offloaded tasks and blockchain tasks simultaneously.Note that there is a trade-off between the resource allocation for MEC and blockchain tasks.Therefore,the allocation of the resources of edge servers to the blockchain and theMEC is crucial for the processing delay of blockchain-based MEC.Most of the existing research tackles the problem of resource allocation in either blockchain or MEC,which leads to unfavorable performance of the blockchain-based MEC system.In this paper,we study how to allocate the computing resources of edge servers to the MEC and blockchain tasks with the aimtominimize the total systemprocessing delay.For the problem,we propose a computing resource Allocation algorithmfor Blockchain-based MEC(ABM)which utilizes the Slater’s condition,Karush-Kuhn-Tucker(KKT)conditions,partial derivatives of the Lagrangian function and subgradient projection method to obtain the solution.Simulation results show that ABM converges and effectively reduces the processing delay of blockchain-based MEC.
文摘In the groundbreaking study “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems,” authored by Zaki Ali Bayashot, the transformative role of artificial intelligence (AI) in urban development is meticulously examined. This comprehensive research delineates the multifaceted ways in which AI-powered mobile applications can significantly enhance the efficiency, sustainability, and livability of urban environments, marking a pivotal step towards the realization of smart cities globally. Bayashot meticulously outlines the critical areas where AI-powered apps offer unprecedented advantages, including urban mobility, public safety, energy management, and environmental monitoring. By leveraging AI’s capabilities, these applications not only streamline city operations but also foster a more sustainable interaction between city dwellers and their environment. The paper emphasizes the importance of data-driven decision-making in urban planning, showcasing how AI analytics can predict and mitigate traffic congestion, optimize energy consumption, and enhance emergency response strategies. The author also explores the social implications of AI in urban settings, highlighting the potential for these technologies to bridge the gap between government entities and citizens. Through engaging case studies, Bayashot demonstrates how participatory governance models, enabled by AI apps, can promote transparency, accountability, and citizen engagement in urban management. A significant contribution of this research is its focus on the challenges and opportunities presented by the integration of AI into smart city ecosystems. Bayashot discusses the technical, ethical, and privacy concerns associated with AI applications, advocating for a balanced approach that ensures technological advancements do not come at the expense of civil liberties. The study calls for robust regulatory frameworks to govern the use of AI in public spaces, emphasizing the need for ethical AI practices that respect privacy and promote inclusivity. Furthermore, Bayashot’s research underscores the necessity of cross-disciplinary collaboration in the development and implementation of AI technologies in urban contexts. By bringing together experts from information technology, urban planning, environmental science, and social sciences, the author argues for a holistic approach to smart city development. This interdisciplinary strategy ensures that AI applications are not only technologically sound but also socially and environmentally responsible. The paper concludes with a visionary outlook on the future of smart cities, posited on the seamless integration of AI technologies. Bayashot envisions a world where AI-powered mobile apps not only facilitate smoother urban operations but also empower citizens to actively participate in the shaping of their urban environments. This research serves as a critical call to action for policymakers, technologists, and urban planners to embrace AI as a tool for creating more sustainable, efficient, and inclusive cities. By presenting a detailed analysis of the current state of AI in urban development, coupled with practical insights and forward-looking recommendations, “The Contribution of AI-powered Mobile Apps to Smart City Ecosystems” stands as a seminal work that is poised to inspire and guide the evolution of urban landscapes worldwide. Its comprehensive exploration of the subject matter, combined with its impactful conclusions, make it a must-read for anyone involved in the field of smart city development, AI technology, or urban policy-making.
文摘The RPL(IPv6 Routing Protocol for Low-Power and Lossy Networks)protocol is essential for efficient communi-cation within the Internet of Things(IoT)ecosystem.Despite its significance,RPL’s susceptibility to attacks remains a concern.This paper presents a comprehensive simulation-based analysis of the RPL protocol’s vulnerability to the decreased rank attack in both static andmobilenetwork environments.We employ the Random Direction Mobility Model(RDM)for mobile scenarios within the Cooja simulator.Our systematic evaluation focuses on critical performance metrics,including Packet Delivery Ratio(PDR),Average End to End Delay(AE2ED),throughput,Expected Transmission Count(ETX),and Average Power Consumption(APC).Our findings illuminate the disruptive impact of this attack on the routing hierarchy,resulting in decreased PDR and throughput,increased AE2ED,ETX,and APC.These results underscore the urgent need for robust security measures to protect RPL-based IoT networks.Furthermore,our study emphasizes the exacerbated impact of the attack in mobile scenarios,highlighting the evolving security requirements of IoT networks.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金National Natural Science Foundation of China(62072392).
文摘Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encounter challenges when dealing with abnormal data flow nodes,leading to decreased allocation accuracy and efficiency.To address these issues,this study proposes a novel two-part invalid detection task allocation framework.In the first step,an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data.Compared to the baseline method,the model achieves an approximately 4%increase in the F1 value on the public dataset.In the second step of the framework,task allocation modeling is performed using a twopart graph matching method.This phase introduces a P-queue KM algorithm that implements a more efficient optimization strategy.The allocation efficiency is improved by approximately 23.83%compared to the baseline method.Empirical results confirm the effectiveness of the proposed framework in detecting abnormal data nodes,enhancing allocation precision,and achieving efficient allocation.
基金Wenzhou Key Scientific and Technological Projects(No.ZG2020031)Wenzhou Polytechnic Research Projects(No.WZY2021002)+3 种基金Key R&D Projects in Zhejiang Province(No.2021C01117)Major Program of Natural Science Foundation of Zhejiang Province(LD22F020002)the Cloud Security Key Technology Research Laboratorythe Researchers Supporting Project Number(RSP2023R509),King Saud University,Riyadh,Saudi Arabia.
文摘With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protection of mobile users’privacy information.At present,mobile user authenticationmethods based on humancomputer interaction have been extensively studied due to their advantages of high precision and non-perception,but there are still shortcomings such as low data collection efficiency,untrustworthy participating nodes,and lack of practicability.To this end,this paper proposes a privacy-enhanced mobile user authentication method with motion sensors,which mainly includes:(1)Construct a smart contract-based private chain and federated learning to improve the data collection efficiency of mobile user authentication,reduce the probability of the model being bypassed by attackers,and reduce the overhead of data centralized processing and the risk of privacy leakage;(2)Use certificateless encryption to realize the authentication of the device to ensure the credibility of the client nodes participating in the calculation;(3)Combine Variational Mode Decomposition(VMD)and Long Short-TermMemory(LSTM)to analyze and model the motion sensor data of mobile devices to improve the accuracy of model certification.The experimental results on the real environment dataset of 1513 people show that themethod proposed in this paper can effectively resist poisoning attacks while ensuring the accuracy and efficiency of mobile user authentication.