期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic Modeling and Experimental Verification of an RPR Type Compliant Paralle Mechanism with Low Orders
1
作者 Shuang Zhang Jingfang Liu +1 位作者 Huafeng Ding Yanbin Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期83-94,共12页
Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The ... Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism. 展开更多
关键词 Compliant parallel mechanism Dynamic model modal synthesis method Dynamic experiment
下载PDF
Effects of Machine Tool Configuration on Its Dynamics Based on Orthogonal Experiment Method 被引量:11
2
作者 GAO Xiangsheng ZHANG Yidu +1 位作者 ZHANG Hongwei WU Qiong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第2期285-291,共7页
In order to analyze the influence of configuration parameters on dynamic characteristics of machine tools in the working space, the configuration parameters have been suggested based on the orthogonal experiment metho... In order to analyze the influence of configuration parameters on dynamic characteristics of machine tools in the working space, the configuration parameters have been suggested based on the orthogonal experiment method. Dynamic analysis of a milling machine, which is newly designed for producing turbine blades, has been conducted by utilizing the modal synthesis method. The finite element model is verified and updated by experimental modal analysis (EMA) of the machine tool. The result gained by modal synthesis method is compared with whole-model finite element method (FEM) result as well. According to the orthogonal experiment method, four configuration parameters of machine tool are considered as four factors for dynamic characteristics. The influence of configuration parameters on the first three natural frequencies is obtained by range analysis. It is pointed out that configuration parameter is the most important factor affecting the fundamental frequency of machine tools, and configuration parameter has less effect on lower-order modes of the system than others. The combination of configuration parameters which makes the fundamental frequency reach the maximum value is provided. Through demonstration, the conclusion can be drawn that the influence of configuration parameters on the natural frequencies of machine tools can be analyzed explicitly by the orthogonal experiment method, which offers a new method for estimating the dynamic characteristics of machine tools. 展开更多
关键词 configuration parameter dynamic characteristics modal synthesis method SUBSTRUCTURE orthogonal experiment method
原文传递
Nonlinear aeroelastic analysis of the folding fin with freeplay under thermal environment 被引量:10
3
作者 Haonan HE Hong TANG +3 位作者 Kaiping YU Jinze LI Ning YANG Xiaolei ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第9期2357-2371,共15页
The nonlinear aeroelastic behavior of a folding fin in supersonic flow is investigated in this paper.The finite element model of the fin is established and the deployable hinges are represented by three torsion spring... The nonlinear aeroelastic behavior of a folding fin in supersonic flow is investigated in this paper.The finite element model of the fin is established and the deployable hinges are represented by three torsion springs with the freeplay nonlinearity.The aerodynamic grid point is assumed to be at the center of each aerodynamic box for simplicity.The aerodynamic governing equation is given by using the infinite plate spline method and the modified linear piston theory.An improved fixed-interface modal synthesis method,which can reduce the rigid connections at the interface,is developed to save the problem size and computation time.The uniform temperature field is applied to create the thermal environment.For the linear flutter analyses,the flutter speed increases first and then decreases with the rise of the hinge stiffness due to the change of the flutter coupling mechanism.For the nonlinear analyses,a larger freeplay angle results in a higher vibration divergent speed.Two different types of limit cycle oscillations and a multiperiodic motion are observed in the wide range of airspeed under the linear flutter boundary.The linear flutter speed shows a slight descend in the thermal environment,but the effect of the temperature on the vibration divergent speed is different under different hinge stiffnesses when there exists freeplay. 展开更多
关键词 Aeroelasticity Fixed-interface modal synthesis method Folding fin Freeplay Thermal environment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部