The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic anal...The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm.展开更多
A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibrat...A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibration amplitude.For this reason,the Operational Modal Analysis(OMA)was carried out in order to identify the pri-mary cause.According to the investigation,one of the harmonic components which was 18 times the motor’s running speed matched with a resonance frequency of 112 Hz.According to OMA study,the motor was vibrating in torsional motion because the compressor’s load had stimulated the entire motor-compressor unit at this reso-nance frequency.The analysis also demonstrates the bulging effect of the motor shaft’s axial vibration on the motor’s endplate.展开更多
Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical...Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.展开更多
A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experime...A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified, Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method.展开更多
The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equ...The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.展开更多
A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among t...A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among these models, the coupled bolt model provides the best accurate responses compared with the experimental results. The contact bolt model shows the best effectiveness and usefulness in view of operational time. The bolt models proposed in this study are adopted for a dynamic characteristic analysis of a large diesel engine consisting of several parts which are connected by many bolts. The dynamic behavior of the entire engine structure was investigated by experiment. The coupled bolt model and the contact bolt model were applied to model the assembly of engine with high preload. The experimental results are in good agreement with the finite element method (FEM) results. Compared with the other models, the contact bolt model presented in this paper is more effective and useful in view of operational time and experience of analysts.展开更多
The modal method is applied to analyze coupled vibration of belt drive systems. A belt drive system is a hybrid system consisting of continuous belts modeled as strings as well as discrete pulleys and a tensioner arm....The modal method is applied to analyze coupled vibration of belt drive systems. A belt drive system is a hybrid system consisting of continuous belts modeled as strings as well as discrete pulleys and a tensioner arm. The characteristic equation of the system is derived from the governing equation. Numerical results demenstrate the effects of the transport speed and the initial tension on natural frequencies.展开更多
Response spectral moments are useful for system reliability analysis.Usually,spectral mo- ments are calculated by the frequency domain method.Based on the time domain modal analysis of random vibrations,the authors pr...Response spectral moments are useful for system reliability analysis.Usually,spectral mo- ments are calculated by the frequency domain method.Based on the time domain modal analysis of random vibrations,the authors present a new method for calculating response spectral moments through response correlation functions.The method can be applied to both classical and non-classical damping cases and to three kinds of random excitations,i.e.,white noise,band-limited white noise, and filtered white noise.展开更多
Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanic...Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanical parameters as a convex polyhedral model,the modal analysis problem of a composite landing gear is transferred into a linear fractional programming(LFR)eigenvalue solution problem.As a consequent,the extreme-point algorithm is proposed to estimate lower and upper bounds of eigenvalues,namely the exact results of eigenvalues can be easily obtained at the extreme-point locations of the convex polyhedral model.The simulation results show that the proposed model and algorithm can play an important role in the eigenvalue solution problem and possess valuable engineering significance.It will be a powerful and effective tool for further vibration analysis for the landing gear.展开更多
A large model of the screen was mounted in the laboratory for studying its modal performance. The model is suspended with steel ropes. Modal test was carried out with artificially exciting by 500 g impacting hammer an...A large model of the screen was mounted in the laboratory for studying its modal performance. The model is suspended with steel ropes. Modal test was carried out with artificially exciting by 500 g impacting hammer and 100 kg exciting force shaker respectively. Synthesis and correction of the modal parameters are obtained from both testing methods. Design faults of vibrating screen were determined based on the analy-sis and dynamic correction of structure approaches about the screen was put forward finally.展开更多
The dynamic modal model analysis of the oil casing connection is done by finite element method (FEM), and the first nature frequency, the second nature frequency, the vibration mode shape and the time domain of the no...The dynamic modal model analysis of the oil casing connection is done by finite element method (FEM), and the first nature frequency, the second nature frequency, the vibration mode shape and the time domain of the node displacement and the element stress variation in the thread connection are gotten. The Von.Mises stresses of the connection in the static and dynamic state are also studied. The results of calculation and analysis show: (1) because the maximum of static stress is at the coupling thread end of connection, the connection begins to thread off at the coupling thread end, which is in accord with the results of the thread off experiment in laboratory; (2) because the first nature frequency is very high, the probability of casing connection to be damaged from vibration is little; (3) the shock dynamic load makes casing connection begin to thread off at the tube thread end.展开更多
For some large-scale engineering structures in operating conditions, modal param- eters estimation must base itself on response-only data. This problem has received a considerable amount of attention in the past few y...For some large-scale engineering structures in operating conditions, modal param- eters estimation must base itself on response-only data. This problem has received a considerable amount of attention in the past few years. It is well known that the cross-correlation function between the measured responses is a sum of complex exponential functions of the same form as the impulse response function of the original system. So this paper presents a time-domain operating modal identifcation global scheme and a frequency-domain scheme from output-only by cou- pling the cross-correlation function with conventional modal parameter estimation. The outlined techniques are applied to an airplane model to estimate modal parameters from response-only data.展开更多
A three-dimensional model of the uplift device of a sugarcane harvester was built up in Pro/Engineer. Simulation and evaluation of its motional and dynamic performance were performed with the automatic dynamic analysi...A three-dimensional model of the uplift device of a sugarcane harvester was built up in Pro/Engineer. Simulation and evaluation of its motional and dynamic performance were performed with the automatic dynamic analysis of mechanical system (ADAMS). ANSYS program was applied to the structural analysis of the model. A finite element analytic model was built up with the bottom-up methodology and was meshed. The default Block Lanczos method was used to work out the native frequency. The results indicate that the five lower modes-the transpotaion wheel, the left holding device, the right holding device, the left cutter disk, and the right cutter disk- and displacement of vibratory type only slightly affect the process of sugarcane harvester and harvesting quality. So it is advisable that the optimization of the static intensity other than the dynamic stiffness of uplift device be executed.展开更多
In this paper, the method of vibration measurement and modal analysis for AM50 Tunneller machine is presented. When the machine was used for cutting man made coal bed and real coal bed, the vibration of the machine wa...In this paper, the method of vibration measurement and modal analysis for AM50 Tunneller machine is presented. When the machine was used for cutting man made coal bed and real coal bed, the vibration of the machine was measured and the results of signal analysis show that the vibration characteristics under the two kinds of working situations are similar. The modal model of the machine is established, and then, the intrinsic vibration characteristics of AM50 tunneller are investigated by means of the method of experimental modal analysis. The vibration response simulation under a set of loading spectra measured is carried out by force response simulation software.展开更多
Head actuator arm assembly (HAA) is the most important mechanical component of a mobile hard disk drive (HDD) and its shock dynamic response is a principal index of vibration resistance. In this paper,a finite element...Head actuator arm assembly (HAA) is the most important mechanical component of a mobile hard disk drive (HDD) and its shock dynamic response is a principal index of vibration resistance. In this paper,a finite element (FE) model is firstly developed in ANSYS of 2.5 inch (1 inch=25.4 mm) mobile hard disk. This model includes actuator arm,voice coil motor (VCM) and pivot bearing. The various step modal of HAA is calculated by FE model. Then the actuator arm vibration behavior is simulated with LS-DYNA procedure. The influence of pulse waveform,pulse amplitude and pulse width on the shock response of the relative displacement of the head actuator arm assembly is studied.展开更多
Compressor is an important part of aero engine. In the environment of high temperature and high pressure,compressor blade will suffer from several physical and chemical processes,such as centrifugal force,aerodynamic ...Compressor is an important part of aero engine. In the environment of high temperature and high pressure,compressor blade will suffer from several physical and chemical processes,such as centrifugal force,aerodynamic force vibration and oxidation. These processes will lead compressor blade to fatigue fracture,and at the same time,make negative effects on the engine’ s overall performance. Based on the software ANSYS15. 0,we made strength analysis and modal analysis of compressor blade in this paper. As a result,we got its natural frequencies,relevant modal parameters and vibration mode cloud pictures. After analyzing the influence that centrifugal force made on modal parameters,we predicted the expected damage of the blade. Eventually the analysis results will provide the basis for overall performance evaluation,structural crack detection,fatigue life estimation and strength calculation of aircraft engine compressor.展开更多
The three-dimensional finite element method model with 20 degree sector of the ITER overall gravity support system was built by the ANSYS software. The modal analysis of the gravity support system was made and first t...The three-dimensional finite element method model with 20 degree sector of the ITER overall gravity support system was built by the ANSYS software. The modal analysis of the gravity support system was made and first ten natural frequencies and vibration modes of the gravity support system were calculated by using Block Lanczos method. The results of modal analysis on ITER represent that the stiffness of flexible plates has influenced greatly for the natural frequency of the system.展开更多
In this paper, the finite element analysis software (ANSYS) is applied to the modal analysis of a ZJ30/1700CZ's drilling machine derrick under a natural condition and a loaded condition, respectively. The precedin...In this paper, the finite element analysis software (ANSYS) is applied to the modal analysis of a ZJ30/1700CZ's drilling machine derrick under a natural condition and a loaded condition, respectively. The preceding nine step natural frequencies and the corresponding mode shapes of the derrick are calculated. By means of the comparison of the natural frequency of the derrick with the design work frequency of the drilling machine and the analysis of the step mode shape of the derrick, the drilling machine derrick structure design is proved to be correct.展开更多
The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. Thes...The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. These parameters have important reference value in designing the chassis frame properly and provide a necessary basis for the fault diagnostics of the truck.展开更多
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11772192).
文摘The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm.
文摘A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibration amplitude.For this reason,the Operational Modal Analysis(OMA)was carried out in order to identify the pri-mary cause.According to the investigation,one of the harmonic components which was 18 times the motor’s running speed matched with a resonance frequency of 112 Hz.According to OMA study,the motor was vibrating in torsional motion because the compressor’s load had stimulated the entire motor-compressor unit at this reso-nance frequency.The analysis also demonstrates the bulging effect of the motor shaft’s axial vibration on the motor’s endplate.
基金Supported by National Natural Science Foundation of China(Grant No.51305039)Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110005120004)+1 种基金Fundamental Research Funds for the Central Universities,China(Grant No.2014PTB-00-01)National Basic Research Program of China(973 Program,Grant No.2013CB733000)
文摘Modal analysis is a fundamental and important task for modeling and control of the flexible manipulator. However, almost all of the traditional modal analysis methods view the flexible manipulator as a pure mechanical structure and neglect feedback action of joint controller. In order to study the effects of joint controller on the modal analysis of rotational flexible manipulator, a closed-loop analytical modal analysis method is proposed. Firstly, two exact boundary constraints, namely servo feedback constraint and bending moment constraint, are derived to solve the vibration partial differential equation. It is found that the stiffness and damping gains of joint controller are both included in the boundary conditions, which lead to an unconventional secular term. Secondly, analytical algorithm based on Ritz approach is developed by using Laplace transform and complex modal approach to obtain the natural frequencies and mode shapes. And then, the numerical simulations are performed and the computational results show that joint controller has pronounced influence on the modal parameters: joint controller stiffness reduces the natural frequency, while joint controller damping makes the shape phase non-zero. Furthermore, the validity of the presented conclusion is confirmed through experimental studies. These findings are expected to improve the performance of dynamics simulation systems and model-based controllers.
基金China Postdoctoral Science Foundation Under Grant No. 2004035215 Jiangsu Planned Projects for Postdoctoral Research Funds 2004 Aeronautical Science Research Foundation Under Grant No. 04152065
文摘A frequency and spatial domain decomposition method (FSDD) for operational modal analysis (OMA) is presented in this paper, which is an extension of the complex mode indicator function (CMIF) method for experimental modal analysis (EMA). The theoretical background of the FSDD method is clarified, Singular value decomposition is adopted to separate the signal space from the noise space. Finally, an enhanced power spectrum density (PSD) is proposed to obtain more accurate modal parameters by curve fitting in the frequency domain. Moreover, a simulation case and an application case are used to validate this method.
基金Project(50605060) supported by the National Natural Science Foundation of ChinaProject(20050056058) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(06YFJMJC03300) supported by the National Science Foundation of Tianjin,China
文摘The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.
基金Sponsored by the Ministerial Level Foundation(40402020105)
文摘A contact bolt model is proposed as a new modeling technique to investigate the complex structure with bolted joints for modal analysis and compared with the coupled bolt model, and the test results are given. Among these models, the coupled bolt model provides the best accurate responses compared with the experimental results. The contact bolt model shows the best effectiveness and usefulness in view of operational time. The bolt models proposed in this study are adopted for a dynamic characteristic analysis of a large diesel engine consisting of several parts which are connected by many bolts. The dynamic behavior of the entire engine structure was investigated by experiment. The coupled bolt model and the contact bolt model were applied to model the assembly of engine with high preload. The experimental results are in good agreement with the finite element method (FEM) results. Compared with the other models, the contact bolt model presented in this paper is more effective and useful in view of operational time and experience of analysts.
基金Project supported by the National Natural Science Foundation of China(Nos.10672092 and 10725209)Scientific Research Project of Shanghai Municipal Education Commission(No.07ZZ07)Shanghai Leading Academic Discipline Project(No.Y0103)
文摘The modal method is applied to analyze coupled vibration of belt drive systems. A belt drive system is a hybrid system consisting of continuous belts modeled as strings as well as discrete pulleys and a tensioner arm. The characteristic equation of the system is derived from the governing equation. Numerical results demenstrate the effects of the transport speed and the initial tension on natural frequencies.
基金Project supported by the National Natural Science Foundation of China.
文摘Response spectral moments are useful for system reliability analysis.Usually,spectral mo- ments are calculated by the frequency domain method.Based on the time domain modal analysis of random vibrations,the authors present a new method for calculating response spectral moments through response correlation functions.The method can be applied to both classical and non-classical damping cases and to three kinds of random excitations,i.e.,white noise,band-limited white noise, and filtered white noise.
基金supported by the National Nature Science Foundation of China(No.51805503)the Beijing Natural Science Foundation(No.3202035)。
文摘Through taking uncertain mechanical parameters of composites into consideration,this paper carries out uncertain modal analysis for an unmanned aircraft landing gear.By describing correlated multi-dimensional mechanical parameters as a convex polyhedral model,the modal analysis problem of a composite landing gear is transferred into a linear fractional programming(LFR)eigenvalue solution problem.As a consequent,the extreme-point algorithm is proposed to estimate lower and upper bounds of eigenvalues,namely the exact results of eigenvalues can be easily obtained at the extreme-point locations of the convex polyhedral model.The simulation results show that the proposed model and algorithm can play an important role in the eigenvalue solution problem and possess valuable engineering significance.It will be a powerful and effective tool for further vibration analysis for the landing gear.
基金Supported by Provincial Natural Science Foundation of Shanxi(20031046)
文摘A large model of the screen was mounted in the laboratory for studying its modal performance. The model is suspended with steel ropes. Modal test was carried out with artificially exciting by 500 g impacting hammer and 100 kg exciting force shaker respectively. Synthesis and correction of the modal parameters are obtained from both testing methods. Design faults of vibrating screen were determined based on the analy-sis and dynamic correction of structure approaches about the screen was put forward finally.
文摘The dynamic modal model analysis of the oil casing connection is done by finite element method (FEM), and the first nature frequency, the second nature frequency, the vibration mode shape and the time domain of the node displacement and the element stress variation in the thread connection are gotten. The Von.Mises stresses of the connection in the static and dynamic state are also studied. The results of calculation and analysis show: (1) because the maximum of static stress is at the coupling thread end of connection, the connection begins to thread off at the coupling thread end, which is in accord with the results of the thread off experiment in laboratory; (2) because the first nature frequency is very high, the probability of casing connection to be damaged from vibration is little; (3) the shock dynamic load makes casing connection begin to thread off at the tube thread end.
基金Project supported by the National Natural Science Foundation of China(No.50205012),Aeronautics Foundation(No.01152059)and Civil Aviation Foundation(No.1007-272001).
文摘For some large-scale engineering structures in operating conditions, modal param- eters estimation must base itself on response-only data. This problem has received a considerable amount of attention in the past few years. It is well known that the cross-correlation function between the measured responses is a sum of complex exponential functions of the same form as the impulse response function of the original system. So this paper presents a time-domain operating modal identifcation global scheme and a frequency-domain scheme from output-only by cou- pling the cross-correlation function with conventional modal parameter estimation. The outlined techniques are applied to an airplane model to estimate modal parameters from response-only data.
基金the National Natural Science Foundation (Grant No. 50365001),Guangxi Young Scientists’ Foundation (Grant No. Gui Qin Ke 0640013)PhD Startup Found-ation of Guangxi University of Technology (Project No. 500514).
文摘A three-dimensional model of the uplift device of a sugarcane harvester was built up in Pro/Engineer. Simulation and evaluation of its motional and dynamic performance were performed with the automatic dynamic analysis of mechanical system (ADAMS). ANSYS program was applied to the structural analysis of the model. A finite element analytic model was built up with the bottom-up methodology and was meshed. The default Block Lanczos method was used to work out the native frequency. The results indicate that the five lower modes-the transpotaion wheel, the left holding device, the right holding device, the left cutter disk, and the right cutter disk- and displacement of vibratory type only slightly affect the process of sugarcane harvester and harvesting quality. So it is advisable that the optimization of the static intensity other than the dynamic stiffness of uplift device be executed.
文摘In this paper, the method of vibration measurement and modal analysis for AM50 Tunneller machine is presented. When the machine was used for cutting man made coal bed and real coal bed, the vibration of the machine was measured and the results of signal analysis show that the vibration characteristics under the two kinds of working situations are similar. The modal model of the machine is established, and then, the intrinsic vibration characteristics of AM50 tunneller are investigated by means of the method of experimental modal analysis. The vibration response simulation under a set of loading spectra measured is carried out by force response simulation software.
基金Natural Science Foundation of China (Grant No. 50575072)Scientific Research Fund of Hunan Provincial Education Department (Grant No.07C280)
文摘Head actuator arm assembly (HAA) is the most important mechanical component of a mobile hard disk drive (HDD) and its shock dynamic response is a principal index of vibration resistance. In this paper,a finite element (FE) model is firstly developed in ANSYS of 2.5 inch (1 inch=25.4 mm) mobile hard disk. This model includes actuator arm,voice coil motor (VCM) and pivot bearing. The various step modal of HAA is calculated by FE model. Then the actuator arm vibration behavior is simulated with LS-DYNA procedure. The influence of pulse waveform,pulse amplitude and pulse width on the shock response of the relative displacement of the head actuator arm assembly is studied.
文摘Compressor is an important part of aero engine. In the environment of high temperature and high pressure,compressor blade will suffer from several physical and chemical processes,such as centrifugal force,aerodynamic force vibration and oxidation. These processes will lead compressor blade to fatigue fracture,and at the same time,make negative effects on the engine’ s overall performance. Based on the software ANSYS15. 0,we made strength analysis and modal analysis of compressor blade in this paper. As a result,we got its natural frequencies,relevant modal parameters and vibration mode cloud pictures. After analyzing the influence that centrifugal force made on modal parameters,we predicted the expected damage of the blade. Eventually the analysis results will provide the basis for overall performance evaluation,structural crack detection,fatigue life estimation and strength calculation of aircraft engine compressor.
文摘The three-dimensional finite element method model with 20 degree sector of the ITER overall gravity support system was built by the ANSYS software. The modal analysis of the gravity support system was made and first ten natural frequencies and vibration modes of the gravity support system were calculated by using Block Lanczos method. The results of modal analysis on ITER represent that the stiffness of flexible plates has influenced greatly for the natural frequency of the system.
文摘In this paper, the finite element analysis software (ANSYS) is applied to the modal analysis of a ZJ30/1700CZ's drilling machine derrick under a natural condition and a loaded condition, respectively. The preceding nine step natural frequencies and the corresponding mode shapes of the derrick are calculated. By means of the comparison of the natural frequency of the derrick with the design work frequency of the drilling machine and the analysis of the step mode shape of the derrick, the drilling machine derrick structure design is proved to be correct.
文摘The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. These parameters have important reference value in designing the chassis frame properly and provide a necessary basis for the fault diagnostics of the truck.
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.