The transport sector is increasing day by day to satisfy the global market requirement. The bus is still the main mode of intercity transportation in Canada. Despite, an essentially unchanged conception, the total wei...The transport sector is increasing day by day to satisfy the global market requirement. The bus is still the main mode of intercity transportation in Canada. Despite, an essentially unchanged conception, the total weight of the bus has increased by over 25% during the last three decades. To solve this problem, industrialists have moved to the use of light metals in the transportation field. Therefore, use of lightweight materials, such as aluminum is essential to reduce the total weight of bus. In this study, the focus is on the bus frame as it represents 30% of the total weight and it is the most stressed part of the bus. Its life duration is more important compared to that of all other elements. Thus, a study of the static and vibratory behavior would be very decisive. In this article, two types of analysis are carried out. First is the modal analysis to determine the natural frequencies and the mode shapes using a developed dynamic model of the bus. Because if any of the excitation frequencies coincides with the natural frequencies of the bus frame, then resonance phenomenon occurs. This may lead to excessive deflection, high stress concentration, fatigue of the structure and vehicle discomfort. In this case, the results analysis shows that the natural frequencies are not affected by the change of material. The second type of analysis is the linear static stress analysis to consider the stress distribution and deformation frame pattern under static loads numerically. For the numerical method, the frame is designed using SolidWorks and the analysis is made using Ansys WorkBench. The maximum Von Mises stress obtained for the static loading is in the same order for the three chassis frames studied. But in the case of the aluminium frame, the weight of 764 kg was reduced.展开更多
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona...A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.展开更多
In this paper, modal analysis theory, equivalent dynamic model of the joint surface of assembly and identification methods of joint surface parameters are the main theories. Static and modal analysis of the working ta...In this paper, modal analysis theory, equivalent dynamic model of the joint surface of assembly and identification methods of joint surface parameters are the main theories. Static and modal analysis of the working table components of the FM6324 machining center is done. The three-dimensional model of the working table components is established using Pro E at first, then static characteristics is obtained through ANSYS contact analysis; finally, the dynamic model is established in ANSYS, and its dynamic characteristics is obtained through ANSYS modal analysis.展开更多
基金The financial support of the Aluminium Research Center(REGAL)is greatly appreciated.
文摘The transport sector is increasing day by day to satisfy the global market requirement. The bus is still the main mode of intercity transportation in Canada. Despite, an essentially unchanged conception, the total weight of the bus has increased by over 25% during the last three decades. To solve this problem, industrialists have moved to the use of light metals in the transportation field. Therefore, use of lightweight materials, such as aluminum is essential to reduce the total weight of bus. In this study, the focus is on the bus frame as it represents 30% of the total weight and it is the most stressed part of the bus. Its life duration is more important compared to that of all other elements. Thus, a study of the static and vibratory behavior would be very decisive. In this article, two types of analysis are carried out. First is the modal analysis to determine the natural frequencies and the mode shapes using a developed dynamic model of the bus. Because if any of the excitation frequencies coincides with the natural frequencies of the bus frame, then resonance phenomenon occurs. This may lead to excessive deflection, high stress concentration, fatigue of the structure and vehicle discomfort. In this case, the results analysis shows that the natural frequencies are not affected by the change of material. The second type of analysis is the linear static stress analysis to consider the stress distribution and deformation frame pattern under static loads numerically. For the numerical method, the frame is designed using SolidWorks and the analysis is made using Ansys WorkBench. The maximum Von Mises stress obtained for the static loading is in the same order for the three chassis frames studied. But in the case of the aluminium frame, the weight of 764 kg was reduced.
基金Project supported by the National Natural Science Foundation of China (No.10176011).
文摘A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
文摘In this paper, modal analysis theory, equivalent dynamic model of the joint surface of assembly and identification methods of joint surface parameters are the main theories. Static and modal analysis of the working table components of the FM6324 machining center is done. The three-dimensional model of the working table components is established using Pro E at first, then static characteristics is obtained through ANSYS contact analysis; finally, the dynamic model is established in ANSYS, and its dynamic characteristics is obtained through ANSYS modal analysis.