Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Recent advances in computer vision and deep learning have shown that the fusion of depth information can significantly enhance the performance of RGB-based damage detection and segmentation models.However,alongside th...Recent advances in computer vision and deep learning have shown that the fusion of depth information can significantly enhance the performance of RGB-based damage detection and segmentation models.However,alongside the advantages,depth-sensing also presents many practical challenges.For instance,the depth sensors impose an additional payload burden on the robotic inspection platforms limiting the operation time and increasing the inspection cost.Additionally,some lidar-based depth sensors have poor outdoor performance due to sunlight contamination during the daytime.In this context,this study investigates the feasibility of abolishing depth-sensing at test time without compromising the segmentation performance.An autonomous damage segmentation framework is developed,based on recent advancements in vision-based multi-modal sensing such as modality hallucination(MH)and monocular depth estimation(MDE),which require depth data only during the model training.At the time of deployment,depth data becomes expendable as it can be simulated from the corresponding RGB frames.This makes it possible to reap the benefits of depth fusion without any depth perception per se.This study explored two different depth encoding techniques and three different fusion strategies in addition to a baseline RGB-based model.The proposed approach is validated on computer-generated RGB-D data of reinforced concrete buildings subjected to seismic damage.It was observed that the surrogate techniques can increase the segmentation IoU by up to 20.1%with a negligible increase in the computation cost.Overall,this study is believed to make a positive contribution to enhancing the resilience of critical civil infrastructure.展开更多
Many multi-story or highrise buildings consisting of a number of identical stories are usually considered as periodic spring-mass systems. The general expressions of natural frequencies, mode shapes, slopes and curvat...Many multi-story or highrise buildings consisting of a number of identical stories are usually considered as periodic spring-mass systems. The general expressions of natural frequencies, mode shapes, slopes and curvatures of mode shapes of the periodic spring-mass system by utilizing the periodic structure theory are derived in this paper. The sensitivities of these mode parameters with respect to structural damages, which do not depend on the physical parameters of the original structures, are obtained. Based on the sensitivity analysis of these mode parameters, a two-stage method is proposed to localize and quantify damages of multi-story or highrise buildings. The slopes and curvatures of mode shapes, which are highly sensitive to local damages, are used to localize the damages. Subsequently, the limited measured natural frequencies, which have a better accuracy than the other mode parameters, are used to quantify the extent of damages within the potential damaged locations. The experimental results of a 3-story experimental building demonstrate that the single or multiple damages of buildings, either slight or severe, can be correctly localized by using only the slope or curvature of mode shape in one of the lower modes, in which the change of natural frequency is the largest, and can be accurately quantified by the limited measured natural frequencies with noise pollution.展开更多
The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear ...The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear dynamical systems from incompleteexperimental data. The mass, stiffness, and damping matrices are assumed to be real,symmetric, and positive definite. The partial set of experimental complex eigenvalues and corresponding eigenvectors are given. In the proposed method the least squaresalgorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters. several illustrative examples, are presented to demonstrate the reliability of the proposed method .It is emphasized thatthe mass, damping and stiffness martices can be identified simultaneously.展开更多
The accurate mathematical models for complicated structures are very difficult to construct.The work presented here provides an identification method for estimating the mass.damping,and stiffness matrices of linear dy...The accurate mathematical models for complicated structures are very difficult to construct.The work presented here provides an identification method for estimating the mass.damping,and stiffness matrices of linear dynamical systems from incomplete experimental data.The mass,stiffness and damping matrices are assumed to be real,symmetric,and positive definite The partial set of experimental complex eigenvalues and corresponding eigenvectors are given.In the proposed method the least squares algorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters.Seeveral illustative examples,are presented to demonstrate the reliability of the proposed method .It is emphasized that the mass,damping and stiffness matrices can be identified simultaneously.展开更多
A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized fle...A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized flexibility matrix (GFM) proposed to solve the damage identification problem is recalled and a modal expansion method is introduced. Next, the objective function for iterative optimization process based on the GFM is formulated, and the Trust-Region algorithm is utilized to obtain the solution of the optimization problem for multiple damage cases. And then for computing the objective function gradient, the sensitivity analysis regarding design variables is derived. In addition, due to the spatial incompleteness, the influence of stiffness reduction and incomplete modal measurement data is discussed by means of two numerical examples with several damage cases. Finally, based on the computational results, it is evident that the presented approach provides good validity and reliability for the large and complicated engineering structures.展开更多
桥梁健康监测数据的挖掘和分析工作只有在整体数据质量符合基本要求的有效数据基础上进行,才能保障如模态参数识别、损伤识别和状态评估等后续工作的准确性。因此,基于量化改进的探索性分析方法(Exploratory Data Analysis,EDA)和相关...桥梁健康监测数据的挖掘和分析工作只有在整体数据质量符合基本要求的有效数据基础上进行,才能保障如模态参数识别、损伤识别和状态评估等后续工作的准确性。因此,基于量化改进的探索性分析方法(Exploratory Data Analysis,EDA)和相关性分析从数据完整性、准确性和一致性的角度建立了桥梁健康监测静、动态数据的质量评估方法。对某大跨度斜拉桥健康监测系统的静、动态数据进行质量评估,通过对比分析了不同评估质量的温度数据、静挠度数据和不同评估质量的主梁竖向加速度动力信号的模态参数识别的稳定图,验证了所提方法的正确性。结果表明,所提评估方法能够快速有效地判断数据质量的好坏,进而确保桥梁结构的服役性能评估和预测的准确性,有利于提高健康监测数据的可用性和效能。展开更多
针对“校园大数据”累积的海量数据呈现出离散性、稀疏性等问题,如何从基数大、活动广、个性强的校园学生群体中检测出潜在的、有异常行为的学生,已成为学生异常行为分析亟需解决的问题.本文提出了一种大数据环境下基于多模态融合的大...针对“校园大数据”累积的海量数据呈现出离散性、稀疏性等问题,如何从基数大、活动广、个性强的校园学生群体中检测出潜在的、有异常行为的学生,已成为学生异常行为分析亟需解决的问题.本文提出了一种大数据环境下基于多模态融合的大学生异常行为预警方法(early warning method for abnormal behavior of college students based on multi-modal fusion in big data environment,EWMAB).首先,针对学生行为画像的表征不够丰富,行为标签存在时效性、动态性等问题,建立一种基于多模态特征深度学习的跨模态学生行为画像模型;其次,针对学生异常行为预测、预警的时效性和后置性问题,在学生行为画像和学生行为分类预测基础上,提出了一种基于多模态融合的学生异常行为预警方法,通过长短期记忆神经网络(long and short term memory networks,LSTM),结合学生行为多指标数据和文本信息来解决学生异常行为预警问题;最后,本文通过应用实例验证模型以学生学习成绩异常预警为例,与其他预警算法相比,EWMAB方法可以提高预警的准确性,实现学生异常行为预警的时效性和前置性,从而使学生教育工作更具有针对性、个性化和预测性.展开更多
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金supported in part by a fund from Bentley Systems,Inc.
文摘Recent advances in computer vision and deep learning have shown that the fusion of depth information can significantly enhance the performance of RGB-based damage detection and segmentation models.However,alongside the advantages,depth-sensing also presents many practical challenges.For instance,the depth sensors impose an additional payload burden on the robotic inspection platforms limiting the operation time and increasing the inspection cost.Additionally,some lidar-based depth sensors have poor outdoor performance due to sunlight contamination during the daytime.In this context,this study investigates the feasibility of abolishing depth-sensing at test time without compromising the segmentation performance.An autonomous damage segmentation framework is developed,based on recent advancements in vision-based multi-modal sensing such as modality hallucination(MH)and monocular depth estimation(MDE),which require depth data only during the model training.At the time of deployment,depth data becomes expendable as it can be simulated from the corresponding RGB frames.This makes it possible to reap the benefits of depth fusion without any depth perception per se.This study explored two different depth encoding techniques and three different fusion strategies in addition to a baseline RGB-based model.The proposed approach is validated on computer-generated RGB-D data of reinforced concrete buildings subjected to seismic damage.It was observed that the surrogate techniques can increase the segmentation IoU by up to 20.1%with a negligible increase in the computation cost.Overall,this study is believed to make a positive contribution to enhancing the resilience of critical civil infrastructure.
基金Project supported by the National Natural Science Foundation of China (No. 50378041) Specialized Research Fund for Doctoral Programs of Higher Education (No. 20030487016).
文摘Many multi-story or highrise buildings consisting of a number of identical stories are usually considered as periodic spring-mass systems. The general expressions of natural frequencies, mode shapes, slopes and curvatures of mode shapes of the periodic spring-mass system by utilizing the periodic structure theory are derived in this paper. The sensitivities of these mode parameters with respect to structural damages, which do not depend on the physical parameters of the original structures, are obtained. Based on the sensitivity analysis of these mode parameters, a two-stage method is proposed to localize and quantify damages of multi-story or highrise buildings. The slopes and curvatures of mode shapes, which are highly sensitive to local damages, are used to localize the damages. Subsequently, the limited measured natural frequencies, which have a better accuracy than the other mode parameters, are used to quantify the extent of damages within the potential damaged locations. The experimental results of a 3-story experimental building demonstrate that the single or multiple damages of buildings, either slight or severe, can be correctly localized by using only the slope or curvature of mode shape in one of the lower modes, in which the change of natural frequency is the largest, and can be accurately quantified by the limited measured natural frequencies with noise pollution.
文摘The accurate mathematical models for complicated structures are verydifficult to construct.The work presented here provides an identification method for estimating the mass, damping , and stiffness matrices of linear dynamical systems from incompleteexperimental data. The mass, stiffness, and damping matrices are assumed to be real,symmetric, and positive definite. The partial set of experimental complex eigenvalues and corresponding eigenvectors are given. In the proposed method the least squaresalgorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters. several illustrative examples, are presented to demonstrate the reliability of the proposed method .It is emphasized thatthe mass, damping and stiffness martices can be identified simultaneously.
文摘The accurate mathematical models for complicated structures are very difficult to construct.The work presented here provides an identification method for estimating the mass.damping,and stiffness matrices of linear dynamical systems from incomplete experimental data.The mass,stiffness and damping matrices are assumed to be real,symmetric,and positive definite The partial set of experimental complex eigenvalues and corresponding eigenvectors are given.In the proposed method the least squares algorithm is combined with the iteration technique to determine systems identified matrices and corresponding design parameters.Seeveral illustative examples,are presented to demonstrate the reliability of the proposed method .It is emphasized that the mass,damping and stiffness matrices can be identified simultaneously.
文摘A generalized flexibility–based objective function utilized for structure damage identification is constructed for solving the constrained nonlinear least squares optimized problem. To begin with, the generalized flexibility matrix (GFM) proposed to solve the damage identification problem is recalled and a modal expansion method is introduced. Next, the objective function for iterative optimization process based on the GFM is formulated, and the Trust-Region algorithm is utilized to obtain the solution of the optimization problem for multiple damage cases. And then for computing the objective function gradient, the sensitivity analysis regarding design variables is derived. In addition, due to the spatial incompleteness, the influence of stiffness reduction and incomplete modal measurement data is discussed by means of two numerical examples with several damage cases. Finally, based on the computational results, it is evident that the presented approach provides good validity and reliability for the large and complicated engineering structures.
文摘桥梁健康监测数据的挖掘和分析工作只有在整体数据质量符合基本要求的有效数据基础上进行,才能保障如模态参数识别、损伤识别和状态评估等后续工作的准确性。因此,基于量化改进的探索性分析方法(Exploratory Data Analysis,EDA)和相关性分析从数据完整性、准确性和一致性的角度建立了桥梁健康监测静、动态数据的质量评估方法。对某大跨度斜拉桥健康监测系统的静、动态数据进行质量评估,通过对比分析了不同评估质量的温度数据、静挠度数据和不同评估质量的主梁竖向加速度动力信号的模态参数识别的稳定图,验证了所提方法的正确性。结果表明,所提评估方法能够快速有效地判断数据质量的好坏,进而确保桥梁结构的服役性能评估和预测的准确性,有利于提高健康监测数据的可用性和效能。
文摘针对“校园大数据”累积的海量数据呈现出离散性、稀疏性等问题,如何从基数大、活动广、个性强的校园学生群体中检测出潜在的、有异常行为的学生,已成为学生异常行为分析亟需解决的问题.本文提出了一种大数据环境下基于多模态融合的大学生异常行为预警方法(early warning method for abnormal behavior of college students based on multi-modal fusion in big data environment,EWMAB).首先,针对学生行为画像的表征不够丰富,行为标签存在时效性、动态性等问题,建立一种基于多模态特征深度学习的跨模态学生行为画像模型;其次,针对学生异常行为预测、预警的时效性和后置性问题,在学生行为画像和学生行为分类预测基础上,提出了一种基于多模态融合的学生异常行为预警方法,通过长短期记忆神经网络(long and short term memory networks,LSTM),结合学生行为多指标数据和文本信息来解决学生异常行为预警问题;最后,本文通过应用实例验证模型以学生学习成绩异常预警为例,与其他预警算法相比,EWMAB方法可以提高预警的准确性,实现学生异常行为预警的时效性和前置性,从而使学生教育工作更具有针对性、个性化和预测性.