The multidimensional modal theory proposed by Faltinsen, et al. (2000) is applied to solve liquid nonlinear free sloshing in right circular cylindrical tank for the first time. After selecting the leading modes and ...The multidimensional modal theory proposed by Faltinsen, et al. (2000) is applied to solve liquid nonlinear free sloshing in right circular cylindrical tank for the first time. After selecting the leading modes and fixing the order of magnitudes based on the Narimanov-Moiseev third order asymptotic hypothesis, the general infinite dimensional modal system is reduced to a five dimensional asymptotic modal system (the system of second order nonlinear ordinary differential equations coupling the generalized time dependent coordinates of free surface wave elevation). The numerical integrations of this modal system discover most important nonlinear phenomena, which agree well with both pervious analytic theories and experimental observations. The results indicate that the multidimensional modal method is a very good tool for solving liquid nonlinear sloshing dynamics and will be developed to investigate more complex sloshing problem in our following work.展开更多
In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occu...In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF (Intrinsic Mode Func- tion). To counter such problems in HHT, a new method is put forward to process signal by combining the general- ized regression neural network (GRNN) with the bound- ary local characteristic-scale continuation (BLCC). Firstly, the improved EMD (Empirical Mode Decompo- sition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the gen- erated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain, frequency domain and related parameters of Hilbert- Huang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and 27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method caneffectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accuratelX.展开更多
基金Project supported by the National Defense Pre-research Foundation of‘Tenth Five-Year-Plan’of China (No.41320020301)
文摘The multidimensional modal theory proposed by Faltinsen, et al. (2000) is applied to solve liquid nonlinear free sloshing in right circular cylindrical tank for the first time. After selecting the leading modes and fixing the order of magnitudes based on the Narimanov-Moiseev third order asymptotic hypothesis, the general infinite dimensional modal system is reduced to a five dimensional asymptotic modal system (the system of second order nonlinear ordinary differential equations coupling the generalized time dependent coordinates of free surface wave elevation). The numerical integrations of this modal system discover most important nonlinear phenomena, which agree well with both pervious analytic theories and experimental observations. The results indicate that the multidimensional modal method is a very good tool for solving liquid nonlinear sloshing dynamics and will be developed to investigate more complex sloshing problem in our following work.
基金Supported by National Natural Science Foundation of China(Grant No.51375467)Quality Inspection of Public Welfare Industry Research Projects,China(Grant No.201410009)
文摘In fault diagnosis of rotating machinery, Hil- bert-Huang transform (HHT) is often used to extract the fault characteristic signal and analyze decomposition results in time-frequency domain. However, end effect occurs in HHT, which leads to a series of problems such as modal aliasing and false IMF (Intrinsic Mode Func- tion). To counter such problems in HHT, a new method is put forward to process signal by combining the general- ized regression neural network (GRNN) with the bound- ary local characteristic-scale continuation (BLCC). Firstly, the improved EMD (Empirical Mode Decompo- sition) method is used to inhibit the end effect problem that appeared in conventional EMD. Secondly, the gen- erated IMF components are used in HHT. Simulation and measurement experiment for the cases of time domain, frequency domain and related parameters of Hilbert- Huang spectrum show that the method described here can restrain the end effect compared with the results obtained through mirror continuation, as the absolute percentage of the maximum mean of the beginning end point offset and the terminal point offset are reduced from 30.113% and 27.603% to 0.510% and 6.039% respectively, thus reducing the modal aliasing, and eliminating the false IMF components of HHT. The proposed method caneffectively inhibit end effect, reduce modal aliasing and false IMF components, and show the real structure of signal components accuratelX.