The pushover analysis (POA) procedure is difficult to apply to high-rise buildings, as it cannot account for the contributions of higher modes. To overcome this limitation, a modal pushover analysis (MPA) procedur...The pushover analysis (POA) procedure is difficult to apply to high-rise buildings, as it cannot account for the contributions of higher modes. To overcome this limitation, a modal pushover analysis (MPA) procedure was proposed by Chopra et al. (2001). However, invariable lateral force distributions are still adopted in the MPA. In this paper, an improved MPA procedure is presented to estimate the seismic demands of structures, considering the redistribution of inertia forces after the structure yields. This improved procedure is verified with numerical examples of 5-, 9- and 22-story buildings. It is concluded that the improved MPA procedure is more accurate than either the POA procedure or MPA procedure. In addition, the proposed procedure avoids a large computational effort by adopting a two-phase lateral force distribution..展开更多
The effects of higher modes and torsion have a significant impact on the seismic responses of asymmetric-plan tall buildings. A consecutive modal pushover (CMP) procedure is one of the pushover methods that have been ...The effects of higher modes and torsion have a significant impact on the seismic responses of asymmetric-plan tall buildings. A consecutive modal pushover (CMP) procedure is one of the pushover methods that have been developed to consider these effects. The aim of this paper is to modify the (CMP) analysis procedure to estimate the seismic demands of one-way asymmetric-plan tall buildings with dual systems. An analysis of 10-, 15- and 20-story asymmetric-plan buildings is carried out, and the results from the modified consecutive modal pushover (MCMP) procedure are compared with those obtained from the modal pushover analysis (MPA) procedure and the nonlinear time history analysis (NLTHA). The MCMP estimates of the seismic demands of one-way asymmetric-plan buildings demonstrate a reasonable accuracy, compared to the results obtained from the NLTHA. Furthermore, the accuracy of the MCMP procedure in the prediction of plastic hinge rotations is better than the MPA procedure. The new pushover procedure is also more accurate than the FEMA load distribution and the MPA procedure.展开更多
基金Supported by: National Natural Science Foundation of China Under Grant No.50608024 and No.50538050 Opening Laboratory of Earthquake Engineering and Engineering Vibration Foundation Under Grant No.2007001
文摘The pushover analysis (POA) procedure is difficult to apply to high-rise buildings, as it cannot account for the contributions of higher modes. To overcome this limitation, a modal pushover analysis (MPA) procedure was proposed by Chopra et al. (2001). However, invariable lateral force distributions are still adopted in the MPA. In this paper, an improved MPA procedure is presented to estimate the seismic demands of structures, considering the redistribution of inertia forces after the structure yields. This improved procedure is verified with numerical examples of 5-, 9- and 22-story buildings. It is concluded that the improved MPA procedure is more accurate than either the POA procedure or MPA procedure. In addition, the proposed procedure avoids a large computational effort by adopting a two-phase lateral force distribution..
文摘The effects of higher modes and torsion have a significant impact on the seismic responses of asymmetric-plan tall buildings. A consecutive modal pushover (CMP) procedure is one of the pushover methods that have been developed to consider these effects. The aim of this paper is to modify the (CMP) analysis procedure to estimate the seismic demands of one-way asymmetric-plan tall buildings with dual systems. An analysis of 10-, 15- and 20-story asymmetric-plan buildings is carried out, and the results from the modified consecutive modal pushover (MCMP) procedure are compared with those obtained from the modal pushover analysis (MPA) procedure and the nonlinear time history analysis (NLTHA). The MCMP estimates of the seismic demands of one-way asymmetric-plan buildings demonstrate a reasonable accuracy, compared to the results obtained from the NLTHA. Furthermore, the accuracy of the MCMP procedure in the prediction of plastic hinge rotations is better than the MPA procedure. The new pushover procedure is also more accurate than the FEMA load distribution and the MPA procedure.