This paper presents a new approach for solving a class of infinite horizon nonlinear optimal control problems (OCPs).In this approach,a nonlinear two-point boundary value problem (TPBVP),derived from Pontryagin's ...This paper presents a new approach for solving a class of infinite horizon nonlinear optimal control problems (OCPs).In this approach,a nonlinear two-point boundary value problem (TPBVP),derived from Pontryagin's maximum principle,is transformed into a sequence of linear time-invariant TPBVPs.Solving the latter problems in a recursive manner provides the optimal control law and the optimal trajectory in the form of uniformly convergent series.Hence,to obtain the optimal solution,only the techniques for solving linear ordinary differential equations are employed.An efficient algorithm is also presented,which has low computational complexity and a fast convergence rate.Just a few iterations are required to find an accurate enough suboptimal trajectory-control pair for the nonlinear OCP.The results not only demonstrate the efficiency,simplicity,and high accuracy of the suggested approach,but also indicate its effectiveness in practical use.展开更多
This article presents an efficient parallel processing approach for solving the opti- mal control problem of nonlinear composite systems. In this approach, the original high-order coupled nonlinear two-point boundary ...This article presents an efficient parallel processing approach for solving the opti- mal control problem of nonlinear composite systems. In this approach, the original high-order coupled nonlinear two-point boundary value problem (TPBVP) derived from the Pontrya- gin's maximum principle is first transformed into a sequence of lower-order deeoupled linear time-invariant TPBVPs. Then, an optimal control law which consists of both feedback and forward terms is achieved by using the modal series method for the derived sequence. The feedback term specified by local states of each subsystem is determined by solving a ma- trix Riccati differential equation. The forward term for each subsystem derived from its local information is an infinite sum of adjoint vectors. The convergence analysis and parallel processing capability of the proposed approach are also provided. To achieve an accurate feedforward-feedbaek suboptimal control, we apply a fast iterative algorithm with low com- putational effort. Finally, some comparative results are included to illustrate the effectiveness of the proposed approach.展开更多
文摘This paper presents a new approach for solving a class of infinite horizon nonlinear optimal control problems (OCPs).In this approach,a nonlinear two-point boundary value problem (TPBVP),derived from Pontryagin's maximum principle,is transformed into a sequence of linear time-invariant TPBVPs.Solving the latter problems in a recursive manner provides the optimal control law and the optimal trajectory in the form of uniformly convergent series.Hence,to obtain the optimal solution,only the techniques for solving linear ordinary differential equations are employed.An efficient algorithm is also presented,which has low computational complexity and a fast convergence rate.Just a few iterations are required to find an accurate enough suboptimal trajectory-control pair for the nonlinear OCP.The results not only demonstrate the efficiency,simplicity,and high accuracy of the suggested approach,but also indicate its effectiveness in practical use.
文摘This article presents an efficient parallel processing approach for solving the opti- mal control problem of nonlinear composite systems. In this approach, the original high-order coupled nonlinear two-point boundary value problem (TPBVP) derived from the Pontrya- gin's maximum principle is first transformed into a sequence of lower-order deeoupled linear time-invariant TPBVPs. Then, an optimal control law which consists of both feedback and forward terms is achieved by using the modal series method for the derived sequence. The feedback term specified by local states of each subsystem is determined by solving a ma- trix Riccati differential equation. The forward term for each subsystem derived from its local information is an infinite sum of adjoint vectors. The convergence analysis and parallel processing capability of the proposed approach are also provided. To achieve an accurate feedforward-feedbaek suboptimal control, we apply a fast iterative algorithm with low com- putational effort. Finally, some comparative results are included to illustrate the effectiveness of the proposed approach.