An accurate estimation of the applied load pattern is an essential component in each pushover procedure. Recently, a number of adaptive pushover methods have been proposed in which the effects of the higher modes as w...An accurate estimation of the applied load pattern is an essential component in each pushover procedure. Recently, a number of adaptive pushover methods have been proposed in which the effects of the higher modes as well as the progressive changes in the dynamic characteristics of structures are taken into account to compute the applied load pattern. The basic shortcoming of these advanced pushover methods is related to employing the quadratic modal combination rule, whereby the sign reversals of the modal load vectors are suppressed. In this study, an improved displacement-based adaptive pushover method is developed in which the applied load pattern is computed using the factor modal combination rule(FMC). In the proposed procedure, multiple load patterns, depending on the number of the modes considered, are determined in order to take into account the sign reversals of different modal load vectors. The accuracy of the proposed method is verifi ed for seven moment resisting frame buildings of 3, 9 and 20 stories with regularity or vertically geometric and mass irregularities subjected to 60 earthquake ground motion records. The results showed that the proposed methodology is capable of reproducing the peak dynamic responses with very good accuracy.展开更多
Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optim...Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optimization.However,because of its articulated serial structure,a milling robot has an enormous number of operating postures,and its dynamics are affected by the motion state.To accurately obtain the FRF in the operating state of a milling robot,this paper proposes a method based on the structural modification concept.Unlike the traditional excitation method,the proposed method uses robot joint motion excitation instead of hammering excitation to realize automation.To address the problem of the lack of information brought by motion excitation,which leads to inaccurate FRF amplitudes,this paper derives the milling robot regularization theory based on the sensitivity of structural modification,establishes the modal regularization factor,and calibrates the FRF amplitude.Compared to the commonly used manual hammering experiments,the proposed method has high accuracy and reliability when the milling robot is in different postures.Because the measurement can be performed directly and automatically in the operation state,and the problem of inaccurate amplitudes is solved,the proposed method provides a basis for optimizing the machining posture of a milling robot and improving machining efficiency.展开更多
Within the linear framework,the Modal Electromechanical Coupling Factor(MEMCF)is an important indicator to quantify the dynamic conversion of mechanical energy and electrical energy of piezoelectric structures.It is a...Within the linear framework,the Modal Electromechanical Coupling Factor(MEMCF)is an important indicator to quantify the dynamic conversion of mechanical energy and electrical energy of piezoelectric structures.It is also an important tool to guide the piezoelectric damping design of linear structures.Advanced aircraft often fly in maneuvers,and the variable working conditions induce drastic changes in the load level on structures.Geometric and contact nonlinearities of thin-walled structures and joint structures are often activated.To achieve a good vibration reduction effect covering all working conditions,one cannot directly use linear electromechanical coupling theory to instruct the piezoelectric damping design for nonlinear structures.Therefore,this paper defines the Nonlinear Modal Electromechanical Coupling Factor(NMEMCF)and proposes the corresponding numerical method for the first time to quantitatively evaluate the electromechanical coupling capability of nonlinear piezoelectric structures.Three candidate definitions of the NMEMCF are given,including two frequency definitions and one energy definition.The energy definition is the most promising one.It is not only applicable to both conservative and dissipative nonlinear structures but also compatible with the linear MEMCF.In addition,based on the energy formula,the NMEMCF can be obtained by only performing one nonlinear modal analysis in the open-circuit state.The analytical findings and the numerical tool are validated against two piezoelectric structures with different types of nonlinearities.A strong correlation among the NMEMCF,geometric parameters,and energy dissipation is observed.The results confirm that the proposed NMEMCF captures the physics of the electromechanical coupling phenomenon associated with nonlinear piezoelectric structures and can be used as an essential design indicator of piezoelectric damping,especially for variable working conditions.展开更多
文摘An accurate estimation of the applied load pattern is an essential component in each pushover procedure. Recently, a number of adaptive pushover methods have been proposed in which the effects of the higher modes as well as the progressive changes in the dynamic characteristics of structures are taken into account to compute the applied load pattern. The basic shortcoming of these advanced pushover methods is related to employing the quadratic modal combination rule, whereby the sign reversals of the modal load vectors are suppressed. In this study, an improved displacement-based adaptive pushover method is developed in which the applied load pattern is computed using the factor modal combination rule(FMC). In the proposed procedure, multiple load patterns, depending on the number of the modes considered, are determined in order to take into account the sign reversals of different modal load vectors. The accuracy of the proposed method is verifi ed for seven moment resisting frame buildings of 3, 9 and 20 stories with regularity or vertically geometric and mass irregularities subjected to 60 earthquake ground motion records. The results showed that the proposed methodology is capable of reproducing the peak dynamic responses with very good accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.52175463)Key R&D plan of Hubei Province(Grant No.2022BAA055)State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System(Grant No.GZ2022KF008)。
文摘Because robotic milling has become an important means for machining significant large parts,obtaining the structural frequency response function(FRF)of a milling robot is an important basis for machining process optimization.However,because of its articulated serial structure,a milling robot has an enormous number of operating postures,and its dynamics are affected by the motion state.To accurately obtain the FRF in the operating state of a milling robot,this paper proposes a method based on the structural modification concept.Unlike the traditional excitation method,the proposed method uses robot joint motion excitation instead of hammering excitation to realize automation.To address the problem of the lack of information brought by motion excitation,which leads to inaccurate FRF amplitudes,this paper derives the milling robot regularization theory based on the sensitivity of structural modification,establishes the modal regularization factor,and calibrates the FRF amplitude.Compared to the commonly used manual hammering experiments,the proposed method has high accuracy and reliability when the milling robot is in different postures.Because the measurement can be performed directly and automatically in the operation state,and the problem of inaccurate amplitudes is solved,the proposed method provides a basis for optimizing the machining posture of a milling robot and improving machining efficiency.
基金funded by Major Projects of Aero-Engines and Gas Turbines(J2019-Ⅳ-0023-0091 and J2019-Ⅳ-0005-0073)Aeronautical Science Foundation of China(2019ZB051002)+1 种基金China Postdoctoral Science Foundation(2021M700326)Advanced Jet Propulsion Creativity Center(Projects HKCX2020-02-013,HKCX2020-02-016 and HKCX2022-01009)。
文摘Within the linear framework,the Modal Electromechanical Coupling Factor(MEMCF)is an important indicator to quantify the dynamic conversion of mechanical energy and electrical energy of piezoelectric structures.It is also an important tool to guide the piezoelectric damping design of linear structures.Advanced aircraft often fly in maneuvers,and the variable working conditions induce drastic changes in the load level on structures.Geometric and contact nonlinearities of thin-walled structures and joint structures are often activated.To achieve a good vibration reduction effect covering all working conditions,one cannot directly use linear electromechanical coupling theory to instruct the piezoelectric damping design for nonlinear structures.Therefore,this paper defines the Nonlinear Modal Electromechanical Coupling Factor(NMEMCF)and proposes the corresponding numerical method for the first time to quantitatively evaluate the electromechanical coupling capability of nonlinear piezoelectric structures.Three candidate definitions of the NMEMCF are given,including two frequency definitions and one energy definition.The energy definition is the most promising one.It is not only applicable to both conservative and dissipative nonlinear structures but also compatible with the linear MEMCF.In addition,based on the energy formula,the NMEMCF can be obtained by only performing one nonlinear modal analysis in the open-circuit state.The analytical findings and the numerical tool are validated against two piezoelectric structures with different types of nonlinearities.A strong correlation among the NMEMCF,geometric parameters,and energy dissipation is observed.The results confirm that the proposed NMEMCF captures the physics of the electromechanical coupling phenomenon associated with nonlinear piezoelectric structures and can be used as an essential design indicator of piezoelectric damping,especially for variable working conditions.