On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating botto...On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment.展开更多
Owing to the intensive human activities, the Modaomen Estuary has been significantly modified since 1950s, which has resulted in considerable changes of hydrodynamics and morphodynamics in the area. In this paper, the...Owing to the intensive human activities, the Modaomen Estuary has been significantly modified since 1950s, which has resulted in considerable changes of hydrodynamics and morphodynamics in the area. In this paper, the effects of the anthropogenic activities on the hydrodynamics and morphological evolution in the estuary at different stages are systematically assessed based on the detailed bathymetric data and field survey. The results show that the human activities have caused the channelization of the enclosed sea area in the Modamen Estuary;fast seaward movement of the mouth bar with high siltation;expansion of the channel volume due to channel deepening. The paper also highlights the main hydrodynamic changes in the estuary, including the rise of the water level;the distinguishing changes of tidal range before and after the 1990s (decrease and increase respectively); as well as the increase of the divided flow ratio. It is found that reclamation is the main factor promoting the transition of nature of the estuary from runoff dominant to runoff and wave dominant, and sand mining activities are mainly to strengthen the tidal dynamic and to low the water level. The results provide useful guidance for better planning of the future developments in the estuary and further research in the area.展开更多
Because of the influence of human activities, the evolution of the Modaomen Estuary is no longer a purely natural process. We used a long-term morphodynamic model (PRD-LTMM-10) to study the evolution of the estuary ...Because of the influence of human activities, the evolution of the Modaomen Estuary is no longer a purely natural process. We used a long-term morphodynamic model (PRD-LTMM-10) to study the evolution of the estuary from 1977 to 1988. The model incorporated modules for riprap-siltation promotion and waterway dredging. The model can simulate the morphodynamic evolutionary processes occurring in the Modaomen Estuary during the period of interest. We were able to isolate the long-term influences of various human engineering activities and the roles of natural factors in estuarine evolution. The governance projects had the largest effect on the natural development of the estuary, resulting in larger siltation on the west side. Installation of riprap and reclamation of submerged land resulted in scouring of the main Hengzhou Channel causing deep trough out-shift. Severe siltation narrowed the upper end of the Longshiku Deep Trough.展开更多
The morphology of the Modaomen Estuary(ME)has undergone drastic changes in recent decades,and quantifying the contribution of human activities and natural processes is crucial for estuary management.Using Landsat imag...The morphology of the Modaomen Estuary(ME)has undergone drastic changes in recent decades,and quantifying the contribution of human activities and natural processes is crucial for estuary management.Using Landsat images,chart data,and hydrological and meteorological data,this study analyzed the evolution of the shoreline and subaqueous topography of the ME and attempted to quantify the extent of the contributions of human activities.The results show that local human activities dominated morphological evolution in some periods.From 1973 to 2003,the shoreline advanced rapidly seaward,resulting in approximately half of the water area being converted into land.Human activity is critical to this process,with the direct contribution of local land reclamation projects reaching more than 85%.After 2003,the shoreline remained relatively stable,probably due to a decrease in land reclamation projects.Regarding the evolution of subaqueous topography,the shoals in the estuary were heavily silted and gradually disappeared during 1983–2003,and the waterways narrowed and deepened.The average siltation rate decreased from 15.43 mm/a to-1.02 mm/a,indicating that the ME changed from sedimentation to slight erosion.By detecting variations of sediment load,we found that upstream human activities reduced river sediment,while downstream human activities significantly increased sediment input to the ME,leaving little change in the actual sediment input to the ME for a relatively long period.In addition,based on the empirical relationship between the sediment input and siltation rate,local human activities influenced the shift in the siltation state more than upstream and downstream human activities did.These findings suggest that more attention should be paid to local human activities to improve the estuarine management in the ME.展开更多
Observations indicate an abnormal characteristic of saltwater intrusion in the upper Modaomen Waterway of the Pearl River Estuary,i.e.,the maximum salinity occurs during the neap tide or the coming moderate tide inste...Observations indicate an abnormal characteristic of saltwater intrusion in the upper Modaomen Waterway of the Pearl River Estuary,i.e.,the maximum salinity occurs during the neap tide or the coming moderate tide instead of during the spring tide.To explore the associated dynamic mechanisms,a high resolution three-dimensional numerical model was set up based on the Finite Volume Coastal Ocean Model(FVCOM),which covered the entire river network,the Pearl River Estuary,and the adjacent sea.Numerical experiments illustrated that the upper Modaomen Waterway is significantly influenced by the saltwater intrusion from the Hongwan Waterway,a narrow and shallow channel connecting the Modaomen Waterway to the sea.Specific topography,spring-neap tidal variation,local wind stress,and their interaction drive an up-estuary residual current in the Hongwan Waterway,which is much stronger during the neap tide than during the spring tide.As a result,more saltwater in the Hongwan Waterway is spilled over into the Modaomen Waterway during the neap tide or the coming moderate tide.This is the inherent dynamic mechanism why the saltwater intrusion in the upper Modaomen Waterway reaches its maximum during the neap tide or the coming moderate tide.Besides,we also found that the winter prevailing wind can pronouncedly enhance the saltwater intrusion in the Modaomen Waterway.展开更多
基金The Program of International S&T Cooperation under contract No.2010DFA24470the National Science Foundation of China under contract No.41376101the Guangdong Provincial Science and Technology Planning Project under contract Nos 2012A030200002 and 2011B031100008
文摘On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment.
基金funded by the Program of International S&T Cooperation(Grant No.2010DFA24470)the Non-profitable Special Scientific Research Project from the Ministry of Water Resources,China(Grant No.200901034–01)
文摘Owing to the intensive human activities, the Modaomen Estuary has been significantly modified since 1950s, which has resulted in considerable changes of hydrodynamics and morphodynamics in the area. In this paper, the effects of the anthropogenic activities on the hydrodynamics and morphological evolution in the estuary at different stages are systematically assessed based on the detailed bathymetric data and field survey. The results show that the human activities have caused the channelization of the enclosed sea area in the Modamen Estuary;fast seaward movement of the mouth bar with high siltation;expansion of the channel volume due to channel deepening. The paper also highlights the main hydrodynamic changes in the estuary, including the rise of the water level;the distinguishing changes of tidal range before and after the 1990s (decrease and increase respectively); as well as the increase of the divided flow ratio. It is found that reclamation is the main factor promoting the transition of nature of the estuary from runoff dominant to runoff and wave dominant, and sand mining activities are mainly to strengthen the tidal dynamic and to low the water level. The results provide useful guidance for better planning of the future developments in the estuary and further research in the area.
文摘Because of the influence of human activities, the evolution of the Modaomen Estuary is no longer a purely natural process. We used a long-term morphodynamic model (PRD-LTMM-10) to study the evolution of the estuary from 1977 to 1988. The model incorporated modules for riprap-siltation promotion and waterway dredging. The model can simulate the morphodynamic evolutionary processes occurring in the Modaomen Estuary during the period of interest. We were able to isolate the long-term influences of various human engineering activities and the roles of natural factors in estuarine evolution. The governance projects had the largest effect on the natural development of the estuary, resulting in larger siltation on the west side. Installation of riprap and reclamation of submerged land resulted in scouring of the main Hengzhou Channel causing deep trough out-shift. Severe siltation narrowed the upper end of the Longshiku Deep Trough.
基金The National Natural Science Foundation of China under contract Nos 41876205,42106169 and 41890851the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract Nos GML2019ZD0305 and GML2019ZD0303the Project of State Key Laboratory of Tropical Oceanography under contract Nos LTOZZ2102 and LTOZZ2202.
文摘The morphology of the Modaomen Estuary(ME)has undergone drastic changes in recent decades,and quantifying the contribution of human activities and natural processes is crucial for estuary management.Using Landsat images,chart data,and hydrological and meteorological data,this study analyzed the evolution of the shoreline and subaqueous topography of the ME and attempted to quantify the extent of the contributions of human activities.The results show that local human activities dominated morphological evolution in some periods.From 1973 to 2003,the shoreline advanced rapidly seaward,resulting in approximately half of the water area being converted into land.Human activity is critical to this process,with the direct contribution of local land reclamation projects reaching more than 85%.After 2003,the shoreline remained relatively stable,probably due to a decrease in land reclamation projects.Regarding the evolution of subaqueous topography,the shoals in the estuary were heavily silted and gradually disappeared during 1983–2003,and the waterways narrowed and deepened.The average siltation rate decreased from 15.43 mm/a to-1.02 mm/a,indicating that the ME changed from sedimentation to slight erosion.By detecting variations of sediment load,we found that upstream human activities reduced river sediment,while downstream human activities significantly increased sediment input to the ME,leaving little change in the actual sediment input to the ME for a relatively long period.In addition,based on the empirical relationship between the sediment input and siltation rate,local human activities influenced the shift in the siltation state more than upstream and downstream human activities did.These findings suggest that more attention should be paid to local human activities to improve the estuarine management in the ME.
基金supported by the "Creative Research Group" of National Natural Science Foundation of China (Grant No. 41021064)the National Basic Scientific Research Program of Global Change (Grant No.2010CB951201)Marine Special Program for Scientific Research on Public Causes (Grant No. 200705019)
文摘Observations indicate an abnormal characteristic of saltwater intrusion in the upper Modaomen Waterway of the Pearl River Estuary,i.e.,the maximum salinity occurs during the neap tide or the coming moderate tide instead of during the spring tide.To explore the associated dynamic mechanisms,a high resolution three-dimensional numerical model was set up based on the Finite Volume Coastal Ocean Model(FVCOM),which covered the entire river network,the Pearl River Estuary,and the adjacent sea.Numerical experiments illustrated that the upper Modaomen Waterway is significantly influenced by the saltwater intrusion from the Hongwan Waterway,a narrow and shallow channel connecting the Modaomen Waterway to the sea.Specific topography,spring-neap tidal variation,local wind stress,and their interaction drive an up-estuary residual current in the Hongwan Waterway,which is much stronger during the neap tide than during the spring tide.As a result,more saltwater in the Hongwan Waterway is spilled over into the Modaomen Waterway during the neap tide or the coming moderate tide.This is the inherent dynamic mechanism why the saltwater intrusion in the upper Modaomen Waterway reaches its maximum during the neap tide or the coming moderate tide.Besides,we also found that the winter prevailing wind can pronouncedly enhance the saltwater intrusion in the Modaomen Waterway.