A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineeri...A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.展开更多
In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests ...In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests were implemented in the drop plate impact device.Strain gauges were employed to measure impact loads and crack initiation time.The corresponding numerical model was established by using the dynamic finite difference program AUTODYN,and the experimental-numerical method and ABAQUS code were utilized to obtain the initial fracture toughness of the crack.Using experiments and numerical research,we concluded that the DCCP specimen is suitable for measuring the initial fracture toughness of pure mode Ⅰ and mode Ⅱ cracks at the same time;the dynamic initiation toughness increases with the increase of loading rate and the crack initiation time decreases with increasing loading rate;the initiation toughness of mode Ⅱ crack is 0.5 times that of mode Ⅰ crack when subjected to the same loading rate.For the pre-crack in the vicinity of the bottom of a sample,when its length increases from 20 to 100 mm,the dynamic initiation toughness of the pure mode Ⅰ crack gradually decreases,and the longer the lower crack length is,the easier the crack would initiate,but the dynamic initiation toughness of pure mode Ⅱ crack varies little.展开更多
Hydrogen induced cracking(HIC)of 0.3% C,1% Cr,1% Mn,1% Si high strength steel has been studied under simple mode Ⅰ,mode Ⅱ and(Ⅰ+Ⅱ)mixed mode loading conditions.Af- ter being hydrogen-charged in IN H_2SO_4 solution...Hydrogen induced cracking(HIC)of 0.3% C,1% Cr,1% Mn,1% Si high strength steel has been studied under simple mode Ⅰ,mode Ⅱ and(Ⅰ+Ⅱ)mixed mode loading conditions.Af- ter being hydrogen-charged in IN H_2SO_4 solution,the material behaved hydrogen embrittlement in all the cases studied.The threshold K_(ⅡH)/K_(ⅡX) of HIC under mode Ⅱ load- ing was 0.27,which was nearly the same as that K(ⅠH)/K_(ⅠX)=0.29 under mode Ⅰ loading. While the thresholds of-HIC under(Ⅰ+Ⅱ)mixed mode loading were 0.36,0.41 and 0.37 cor- responding to the K_Ⅱ/K_Ⅰ ratio of 0.27,0.4 and O.81.The results show that simple mode Ⅰ or mode Ⅱ loading is more susceptible to hydrogen embrittlement than(Ⅰ+Ⅱ)mixed mode. For explaining the experimental results,the effects of triaxial stress as well as plastic deformation ahead of crack tip has been discussed.展开更多
In the present paper,three dimensional analyses of some general constraint parameters and fracture parameters near the crack tip of Mode I CT specimens in two different thicknesses are carried out by employing ADINA p...In the present paper,three dimensional analyses of some general constraint parameters and fracture parameters near the crack tip of Mode I CT specimens in two different thicknesses are carried out by employing ADINA program.The results reveal that the constraints along the thickness direction are obviously separated into two parts:the keeping similar high constraint field(Z_(1))and rapid reducing constraints one(Z_(2)).The two fields are experimentally confiremed to correspond to the smooth region and the shear lip on the fracture face respectively.So the three dimensional stress structure of Mode I specimens can be derived through discussing the two fields respectively.The distribution of the Crack Tip Opening Displacement(CTOD)along the thickness direction and the three dimensional distribution of the void growth ratio(V_(g))near the crack tip are also obtained.The two fracture parameters are in similar trends along the thickness direction,and both of them can reflect the effect of thickness and that of the loading level to a certain degree.展开更多
The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so t...The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.展开更多
An exact analysis of the modes Ⅱ and Ⅲ problems of a penny- shaped crack in a transversely isotropic piezoelectric medium is performed in this paper.The potential theory method is employed based on the general solut...An exact analysis of the modes Ⅱ and Ⅲ problems of a penny- shaped crack in a transversely isotropic piezoelectric medium is performed in this paper.The potential theory method is employed based on the general solution of three-dimensional piezoelasticity and the four harmonics involved are represented by one complex potential.Previous results in potential theory are then utilized to obtain the exact solution that is expressed in terms of elementary functions.Comparison is made between the current results with those published and good agreement is obtained.展开更多
Mixed mode Ⅰ/Ⅱ fracture erperiments of LC4-CS aluminum alloy were conductedby using tension--shear specimens with thicknesses of 2, 4, 8 and 14mm. Fracturemechanisms of thickness effect on mixed mode Ⅰ/Ⅱ fracture ...Mixed mode Ⅰ/Ⅱ fracture erperiments of LC4-CS aluminum alloy were conductedby using tension--shear specimens with thicknesses of 2, 4, 8 and 14mm. Fracturemechanisms of thickness effect on mixed mode Ⅰ/Ⅱ fracture were first examined fromfracture surface morphology to correlate with the macroscopic fracture behavior andstress state. It is found that specimen thickness has a strong influence on mixed modefracture. As thickness varies from thin to thick the macroscopic fracture surfacesappear the characteristics of plane stress state (2mm, 4mm--thick specimen), three--dimensional stress state (8mm--thick specimens), and plane strain state (14mm--thickspecimens), respectively. The specimens of all kinds of thicknesses are typical of ten-sile type failure under mode Ⅰ loading condition and shear type failure under mode Ⅱloading condition. Two distinct features coexist on the fracture surfaces under mixedmode loading conditions, and the corresponding proportion varies with loading mix-ity. Void--growth processes are the failure mechanism in both predominately tensile-and shears--type fractures. The size and depth of dimples on the fracture surface varygreatly with thickness. Therefore, it is extraordinary necessary to take into accountthe thickness effect when a mixed mode fracture criterion is being established.展开更多
In-plane shear crack sub-critical propagation of rock at high temperature was studied by finite element method and shear-box(i.e.compression-shear) test with newly designed electrically conductive adhesive method.Nume...In-plane shear crack sub-critical propagation of rock at high temperature was studied by finite element method and shear-box(i.e.compression-shear) test with newly designed electrically conductive adhesive method.Numerical and experimental results show that the normalized shear(Mode Ⅱ) stress intensity factors,K ⅡT/KT0 is decreased as the temperature increases because high temperature can improve stress distribution at crack tip and reduce the Mode Ⅱ stress intensity factor.Microscopic features of fractured surface are of little pits and secondary micro-cracks in the vicinity(1.5-4.0 mm) of the crack tip.The chevron-shape secondary cracks gradually merge in the length of about 4-5 mm and disappear along the direction of crack propagation.Stable shear crack propagation time is increased with the increasing temperature while the stable shear crack propagation rate is decreased with the increasing temperature,since high temperature can increase the shear(Mode Ⅱ) fracture toughness and prevent the crack growth.It is necessary to ensure the ligament of specimen long enough to measure the maximum unstable crack propagation rate of rock.展开更多
Shear-box(i.e.compression-shear) test and newly designed electrically conductive adhesive method were used to measure shear crack sub-critical propagation time and rate of sandstone specimen.Different cubic specimens ...Shear-box(i.e.compression-shear) test and newly designed electrically conductive adhesive method were used to measure shear crack sub-critical propagation time and rate of sandstone specimen.Different cubic specimens with and without holes were tested to study the effect of holes on the shear crack sub-critical propagation.Numerical and experimental results show that three independent variables of hole,the interval distance S,the distance between the center of hole and the crack tip L,and hole radius R,have different contribution to the ratio of stress intensity factor of the specimen with holes to that of the specimen without hole,KⅡ/KⅡ0.Increasing S and decreasing L and R will result in the decrease of KⅡ/KⅡ0 and help crack arrest.The weight relation of the independent variables for KⅡ/KⅡ0 is S>L>R.The specimen DH3 with the largest value of S and the smallest values of L and R has the longest sub-critical crack propagation time and the smallest sub-critical crack propagation rate.Adding two suitable holes symmetrically to the original crack plane in rock specimen is considered to be a potential method for crack arrest of rock.展开更多
The near crack line analysis method has been used in the present paper,The classical small scale yielding conditions have been completely abandoned in the analyses and one inappropriate matching condition used to be u...The near crack line analysis method has been used in the present paper,The classical small scale yielding conditions have been completely abandoned in the analyses and one inappropriate matching condition used to be used at the elasticplastic boundary has been corrected.The reasonable solution of the plastic stresses near the crack line region has been established.By matching the plastic stresses with the exact elastic stresses at the elastic-plastic boundary,the plastic stresses the length of the plastic zone and the unit normal vector of the elastic-plastic boundary near the crock line region have been obtained for a mode I crack under uniaxial tension,as well as a mode I crack under biaxial tension,which shows that for both conditions the plastic stress componentsσy, and σsy.he length of the plastic zone and the unit normal vector of the elastic-plastic boundary are quite the same while the plastic stress σs is different.展开更多
The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the gover...The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.展开更多
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear li...The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear line loads is consid- ered. The analytic expression for the combined mode stress intensity factors as a function of time is obtained. The method of solution is based on the application of integral transforms and the Wiener-Hopf technique. Some features of the solutions are discussed and graphical numerical results are presented.展开更多
A theoretical approach is presented for analyzing the ply crackingin general symmetric lami- nates subjected to any combination ofin-plane mechanical loading and uniform temperature changes. Theequivalent constraint m...A theoretical approach is presented for analyzing the ply crackingin general symmetric lami- nates subjected to any combination ofin-plane mechanical loading and uniform temperature changes. Theequivalent constraint model proposed by the authors in a previouswork is used to account for the cracking in- teraction betweenlaminae in the laminates. By using a superposition schemce and thestress field solutions the energy release rate for a ply cracking isexplicitly as a function of stiffness reduction parameters of thelaminates. The ratio of mode Ⅰ to mode Ⅱ is introduced formconstruction of the fracture criterion. The effects of the laminateparameters and the crack spacing on the energy release rate and themode mixity are illustrated. Finally, the model is used to predictthe thermomechanical load for the first-ply-cracking.展开更多
This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements...This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.展开更多
It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times ...It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times of that of mode Ⅰ.Above results illustrate that the resistance of mode Ⅱ crack growth was higher than that of mode Ⅰ,the former resulting from roughness-induced shear resistance,the latter,crack closure. The mode Ⅱ component can play two important roles in near-threshold fatigue crack growth:(1)increasing crack tip plasticity which accelerates the crack growth and(2)intro- ducing crack surface contact and rubbing to reduce the crack propagation rate.By means of crack closure,the quantity of shear resistance was easily solved in this paper.The friction shear stress strength factor range of mode Ⅱ,K_,is still much higher than the closure stress strength factor range of mode Ⅰ,K_(Ⅰ,cl).This illustrated that the roughness enlarged the second role and played a role of shielding crack tip from mode Ⅱ crack.展开更多
A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are ...A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path.For each increment of the crack extension,the meshless method is applied to carry out a stress analysis of the cracked structure.The J-integral,which can be decomposed into mode Ⅰ and mode Ⅱ for mixed-mode crack,is used for the evaluation of the stress intensity factors(SIFs).The crack-propagation direction,predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method.The meshless results agree well with the experimental ones,which validates the accuracy and efficiency of the method.展开更多
基金Supported by Heilongjiang Province Foundation under Grant No.LC08C02
文摘A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.
基金Projects(U19A2098,1210021843)supported by the National Natural Science Foundation of ChinaProject(2021SCU12130)supported by Fundamental Research Funds for the Central Universities,China+1 种基金Project(2021YJ0511)supported by the Sichuan Science and Technology Program,ChinaProjects(DESEYU202205,DESE202005)supported by the Open Fund of Key Laboratory of Deep Earth Science and Engineering,China。
文摘In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests were implemented in the drop plate impact device.Strain gauges were employed to measure impact loads and crack initiation time.The corresponding numerical model was established by using the dynamic finite difference program AUTODYN,and the experimental-numerical method and ABAQUS code were utilized to obtain the initial fracture toughness of the crack.Using experiments and numerical research,we concluded that the DCCP specimen is suitable for measuring the initial fracture toughness of pure mode Ⅰ and mode Ⅱ cracks at the same time;the dynamic initiation toughness increases with the increase of loading rate and the crack initiation time decreases with increasing loading rate;the initiation toughness of mode Ⅱ crack is 0.5 times that of mode Ⅰ crack when subjected to the same loading rate.For the pre-crack in the vicinity of the bottom of a sample,when its length increases from 20 to 100 mm,the dynamic initiation toughness of the pure mode Ⅰ crack gradually decreases,and the longer the lower crack length is,the easier the crack would initiate,but the dynamic initiation toughness of pure mode Ⅱ crack varies little.
文摘Hydrogen induced cracking(HIC)of 0.3% C,1% Cr,1% Mn,1% Si high strength steel has been studied under simple mode Ⅰ,mode Ⅱ and(Ⅰ+Ⅱ)mixed mode loading conditions.Af- ter being hydrogen-charged in IN H_2SO_4 solution,the material behaved hydrogen embrittlement in all the cases studied.The threshold K_(ⅡH)/K_(ⅡX) of HIC under mode Ⅱ load- ing was 0.27,which was nearly the same as that K(ⅠH)/K_(ⅠX)=0.29 under mode Ⅰ loading. While the thresholds of-HIC under(Ⅰ+Ⅱ)mixed mode loading were 0.36,0.41 and 0.37 cor- responding to the K_Ⅱ/K_Ⅰ ratio of 0.27,0.4 and O.81.The results show that simple mode Ⅰ or mode Ⅱ loading is more susceptible to hydrogen embrittlement than(Ⅰ+Ⅱ)mixed mode. For explaining the experimental results,the effects of triaxial stress as well as plastic deformation ahead of crack tip has been discussed.
文摘In the present paper,three dimensional analyses of some general constraint parameters and fracture parameters near the crack tip of Mode I CT specimens in two different thicknesses are carried out by employing ADINA program.The results reveal that the constraints along the thickness direction are obviously separated into two parts:the keeping similar high constraint field(Z_(1))and rapid reducing constraints one(Z_(2)).The two fields are experimentally confiremed to correspond to the smooth region and the shear lip on the fracture face respectively.So the three dimensional stress structure of Mode I specimens can be derived through discussing the two fields respectively.The distribution of the Crack Tip Opening Displacement(CTOD)along the thickness direction and the three dimensional distribution of the void growth ratio(V_(g))near the crack tip are also obtained.The two fracture parameters are in similar trends along the thickness direction,and both of them can reflect the effect of thickness and that of the loading level to a certain degree.
文摘The fracture theory of cubic quasicrystal was developed. The exact analytic solution of a Mode Ⅲ Griffith crack in the material was obtained by using the Fourier transform and dual integral equations theory, and so the displacement and stress fields, the stress intensity factor and strain energy release rate were determined. The results show that the stress intensity factor is independent of material constants, and the strain energy release rate is dependent on all material constants. These provide important information for studying the deformation and fracture of the new solid material.
文摘工程结构在制造工艺过程中或使用期间会产生裂纹,对结构断裂路径的预测和研究是防治工程安全问题发生的重要手段。在考虑裂纹尖端应力场常数项T应力的基础上对传统的最大周向应力准则(Maximum tangential stress criterion,MTS)和最小应变能密度因子准则(Minimum strain energy density criterion,SED)进行修正,采用Python语言对ABAQUS的前、后处理和有限元计算模块进行二次开发,通过计算最优解的粒子群算法(Particle swarm optimization,PSO)将修正后的准则编入裂纹自动扩展程序脚本中。利用上述二次开发程序对初始纯Ⅰ型裂纹的扩展路径进行模拟,结果表明:采用ABAQUS脚本程序模拟结果与相关文献实验结果吻合,表明了程序的有效性,进而实现考虑T应力的多种断裂准则对裂纹扩展路径的预测;当T应力值处于一定范围内时,修正的MTS准则无法预测裂纹发生的偏转现象,扩展路径呈直线,此时可采用修正的SED准则进行预测。
基金The project supported by the National Natural Science Foundation of China(No.19872060)
文摘An exact analysis of the modes Ⅱ and Ⅲ problems of a penny- shaped crack in a transversely isotropic piezoelectric medium is performed in this paper.The potential theory method is employed based on the general solution of three-dimensional piezoelasticity and the four harmonics involved are represented by one complex potential.Previous results in potential theory are then utilized to obtain the exact solution that is expressed in terms of elementary functions.Comparison is made between the current results with those published and good agreement is obtained.
文摘Mixed mode Ⅰ/Ⅱ fracture erperiments of LC4-CS aluminum alloy were conductedby using tension--shear specimens with thicknesses of 2, 4, 8 and 14mm. Fracturemechanisms of thickness effect on mixed mode Ⅰ/Ⅱ fracture were first examined fromfracture surface morphology to correlate with the macroscopic fracture behavior andstress state. It is found that specimen thickness has a strong influence on mixed modefracture. As thickness varies from thin to thick the macroscopic fracture surfacesappear the characteristics of plane stress state (2mm, 4mm--thick specimen), three--dimensional stress state (8mm--thick specimens), and plane strain state (14mm--thickspecimens), respectively. The specimens of all kinds of thicknesses are typical of ten-sile type failure under mode Ⅰ loading condition and shear type failure under mode Ⅱloading condition. Two distinct features coexist on the fracture surfaces under mixedmode loading conditions, and the corresponding proportion varies with loading mix-ity. Void--growth processes are the failure mechanism in both predominately tensile-and shears--type fractures. The size and depth of dimples on the fracture surface varygreatly with thickness. Therefore, it is extraordinary necessary to take into accountthe thickness effect when a mixed mode fracture criterion is being established.
基金Project(50374073) supported by the National Natural Science Foundation of ChinaProject(1343-77239) supported by the Graduate Education Innovation Project of Central South University,China
文摘In-plane shear crack sub-critical propagation of rock at high temperature was studied by finite element method and shear-box(i.e.compression-shear) test with newly designed electrically conductive adhesive method.Numerical and experimental results show that the normalized shear(Mode Ⅱ) stress intensity factors,K ⅡT/KT0 is decreased as the temperature increases because high temperature can improve stress distribution at crack tip and reduce the Mode Ⅱ stress intensity factor.Microscopic features of fractured surface are of little pits and secondary micro-cracks in the vicinity(1.5-4.0 mm) of the crack tip.The chevron-shape secondary cracks gradually merge in the length of about 4-5 mm and disappear along the direction of crack propagation.Stable shear crack propagation time is increased with the increasing temperature while the stable shear crack propagation rate is decreased with the increasing temperature,since high temperature can increase the shear(Mode Ⅱ) fracture toughness and prevent the crack growth.It is necessary to ensure the ligament of specimen long enough to measure the maximum unstable crack propagation rate of rock.
基金Project(50374073) supported by the National Natural Science Foundation of ChinaProject(1343-77239) supported by the Graduate Education Innovation Project of Central South University,China
文摘Shear-box(i.e.compression-shear) test and newly designed electrically conductive adhesive method were used to measure shear crack sub-critical propagation time and rate of sandstone specimen.Different cubic specimens with and without holes were tested to study the effect of holes on the shear crack sub-critical propagation.Numerical and experimental results show that three independent variables of hole,the interval distance S,the distance between the center of hole and the crack tip L,and hole radius R,have different contribution to the ratio of stress intensity factor of the specimen with holes to that of the specimen without hole,KⅡ/KⅡ0.Increasing S and decreasing L and R will result in the decrease of KⅡ/KⅡ0 and help crack arrest.The weight relation of the independent variables for KⅡ/KⅡ0 is S>L>R.The specimen DH3 with the largest value of S and the smallest values of L and R has the longest sub-critical crack propagation time and the smallest sub-critical crack propagation rate.Adding two suitable holes symmetrically to the original crack plane in rock specimen is considered to be a potential method for crack arrest of rock.
文摘The near crack line analysis method has been used in the present paper,The classical small scale yielding conditions have been completely abandoned in the analyses and one inappropriate matching condition used to be used at the elasticplastic boundary has been corrected.The reasonable solution of the plastic stresses near the crack line region has been established.By matching the plastic stresses with the exact elastic stresses at the elastic-plastic boundary,the plastic stresses the length of the plastic zone and the unit normal vector of the elastic-plastic boundary near the crock line region have been obtained for a mode I crack under uniaxial tension,as well as a mode I crack under biaxial tension,which shows that for both conditions the plastic stress componentsσy, and σsy.he length of the plastic zone and the unit normal vector of the elastic-plastic boundary are quite the same while the plastic stress σs is different.
基金supported by the Natural Science Foundation of Shaanxi Province (No.2007011008)
文摘The fracture problems near the similar orthotropic composite materials are interface crack tip for mode Ⅱ of double disstudied. The mechanical models of interface crack for mode Ⅱ are given. By translating the governing equations into the generalized hi-harmonic equations, the stress functions containing two stress singularity exponents are derived with the help of a complex function method. Based on the boundary conditions, a system of non-homogeneous linear equations is found. Two real stress singularity exponents are determined be solving this system under appropriate conditions about bimaterial engineering parameters. According to the uniqueness theorem of limit, both the formulae of stress intensity factors and theoretical solutions of stress field near the interface crack tip are derived. When the two orthotropic materials are the same, the stress singularity exponents, stress intensity factors and stresses for mode II crack of the orthotropic single material are obtained.
基金The project supported by the National Natural Science Foundation of China
文摘The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear line loads is consid- ered. The analytic expression for the combined mode stress intensity factors as a function of time is obtained. The method of solution is based on the application of integral transforms and the Wiener-Hopf technique. Some features of the solutions are discussed and graphical numerical results are presented.
基金the National Natural Science Foundation of China (No.19972076)the Germen Research Foundation (DFG)
文摘A theoretical approach is presented for analyzing the ply crackingin general symmetric lami- nates subjected to any combination ofin-plane mechanical loading and uniform temperature changes. Theequivalent constraint model proposed by the authors in a previouswork is used to account for the cracking in- teraction betweenlaminae in the laminates. By using a superposition schemce and thestress field solutions the energy release rate for a ply cracking isexplicitly as a function of stiffness reduction parameters of thelaminates. The ratio of mode Ⅰ to mode Ⅱ is introduced formconstruction of the fracture criterion. The effects of the laminateparameters and the crack spacing on the energy release rate and themode mixity are illustrated. Finally, the model is used to predictthe thermomechanical load for the first-ply-cracking.
基金supported by the National Natural Science Foundation of China(No.11802165)the China Postdoctoral Science Foundation(Grant No.2019M650158).
文摘This paper develops a new numerical framework for modeⅢcrack problems of thin-walled structures by integrating multiple advanced techniques in the boundary element literature.The details of special crack-tip elements for displacement and stress are derived.An exponential transformation technique is introduced to accurately calculate the nearly singular integral,which is the key task of the boundary element simulation of thin-walled structures.Three numerical experiments with different types of cracks are provided to verify the performance of the present numerical framework.Numerical results demonstrate that the present scheme is valid for modeⅢcrack problems of thin-walled structures with the thickness-to-length ratio in the microscale,even nanoscale,regime.
文摘It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times of that of mode Ⅰ.Above results illustrate that the resistance of mode Ⅱ crack growth was higher than that of mode Ⅰ,the former resulting from roughness-induced shear resistance,the latter,crack closure. The mode Ⅱ component can play two important roles in near-threshold fatigue crack growth:(1)increasing crack tip plasticity which accelerates the crack growth and(2)intro- ducing crack surface contact and rubbing to reduce the crack propagation rate.By means of crack closure,the quantity of shear resistance was easily solved in this paper.The friction shear stress strength factor range of mode Ⅱ,K_,is still much higher than the closure stress strength factor range of mode Ⅰ,K_(Ⅰ,cl).This illustrated that the roughness enlarged the second role and played a role of shielding crack tip from mode Ⅱ crack.
基金Project supported by the National Natural Science Foundation of China(Nos.59825117 and 50175060).
文摘A meshless method integrated with linear elastic fracture mechanics(LEFM)is presented for 2D mixed-mode crack propagation analysis.The domain is divided automatically into sub-domains based on Voronoi cells,which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path.For each increment of the crack extension,the meshless method is applied to carry out a stress analysis of the cracked structure.The J-integral,which can be decomposed into mode Ⅰ and mode Ⅱ for mixed-mode crack,is used for the evaluation of the stress intensity factors(SIFs).The crack-propagation direction,predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method.The meshless results agree well with the experimental ones,which validates the accuracy and efficiency of the method.