Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work ...Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.展开更多
This paper has announced the arrival of new economic era through an analysis of Nike's management mode. The traditional industry classification can't meet demands of industry development. We should inherit and impro...This paper has announced the arrival of new economic era through an analysis of Nike's management mode. The traditional industry classification can't meet demands of industry development. We should inherit and improve traditional economy in order to adapt to the development demand of new economy.展开更多
We describe modeling the solid-state dye laser with the microcavity size comparable to light wavelength. Certain symmetry in the allocation of gain material leads to depletion of odd longitudinal modes that, in turn, ...We describe modeling the solid-state dye laser with the microcavity size comparable to light wavelength. Certain symmetry in the allocation of gain material leads to depletion of odd longitudinal modes that, in turn, increases the tunability range of the microlaser. We provide simple physical explanation for the modeling results.展开更多
文摘Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.
文摘This paper has announced the arrival of new economic era through an analysis of Nike's management mode. The traditional industry classification can't meet demands of industry development. We should inherit and improve traditional economy in order to adapt to the development demand of new economy.
文摘We describe modeling the solid-state dye laser with the microcavity size comparable to light wavelength. Certain symmetry in the allocation of gain material leads to depletion of odd longitudinal modes that, in turn, increases the tunability range of the microlaser. We provide simple physical explanation for the modeling results.