The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio...The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.展开更多
In the exploitation of ocean oil and gas, many offshore structures may be damaged due to the severe environment, so an effective method of diagnosing structural damage is urgently needed to locate the damage and evalu...In the exploitation of ocean oil and gas, many offshore structures may be damaged due to the severe environment, so an effective method of diagnosing structural damage is urgently needed to locate the damage and evaluate its severity. Genetic algorithms have become some of the most important global optimization tools and been widely used in many fields in recent years because of their simple operation and strong robustness. Based on the natural frequencies and mode shapes of the structure, the damage diagnosis of a jacket offshore platform is attributed to an optimization problem and studied by using a genetic algorithm. According to the principle that the structural stiffness of a certain direction can be greatly affected only when the brace bar in the corresponding direction is damaged, an improved objective function was proposed in this paper targeting measurement noise and the characteristics of modal identification for offshore platforms. This function can be used as fitness function of a genetic algorithm, and both numerical simulation and physical model test results show that the improved method may locate the structural damage and evaluate the severity of a jacket offshore platform satisfactorily while improving the robustness of evolutionary searching and the reliability of damage diagnosis.展开更多
Soil erosion is a critical process that is being studied in soil science, hydraulic engineering, and geotech- nical engineering. Among many societal and environmental impacts, soil erosion is a major cause for the fai...Soil erosion is a critical process that is being studied in soil science, hydraulic engineering, and geotech- nical engineering. Among many societal and environmental impacts, soil erosion is a major cause for the failures of bridges. The erodibility of soil is determined by its physical and geochemical properties and is also affected by surrounding biological activities. In most of the current models for soil erosion, erodibility of non-cohesive soil is characterized by its median grain size (Dso), density, and porosity. The contribution to erodibility of the irregular shape of soil grains, which plays an important role in the mechanical and hydraulic properties of coarse-grained soils, is generally ignored. In this paper, a coupled computational fluid dynamics and discrete element method model is developed to analyze the influence of the shape of sand grain on soil erodibility. A numerical model for the drag force on spherical and non-spherical particles is verified by using the results from physical free settling experiments. Erosion of sand grains of different shapes is simulated in a virtual erosion function apparatus, a laboratory device used to mea- sure soil erodibility. The simulation results indicate that the grain shape has major effects on erodibility. Spherical particles do not show a critical velocity because of their low rolling resistance, but a critical velocity does exist for angular particles owing to grain interlocking. The erosion rate is proportional to the flow velocity for both spherical and non-spherical particles. The simulation result for angular particle erosion is fairly consistent with the experimental observations, implying that grain shape is an important factor affecting the erodibility of non-cohesive soils.展开更多
In this study, a two-stage method is presented for identifying multiple damage scenarios. In the first stage, the damage locating vector (DLV) method using normalized cumulative energy (nce) is employed for damage...In this study, a two-stage method is presented for identifying multiple damage scenarios. In the first stage, the damage locating vector (DLV) method using normalized cumulative energy (nce) is employed for damage localization in structures. In the second stage, the differential evolution algorithm (DE) is used for damage severity of the structures. In addition, in the second stage, a modification of an available objective function is made for handing the issue of symmetric structures. To verify the effectiveness of the present technique, numerical examples of a 72-bar space truss and a one-span steel portal frame are considered. In addition, the effect of noise on the performance of the identification results is also investigated. The numerical results show that the proposed combination gives good assessment of damage location and extent for multiple structural damage cases.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51375424)
文摘The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.
基金Supported by the National Natural Science Fundation of China (51079136)(51179179)
文摘In the exploitation of ocean oil and gas, many offshore structures may be damaged due to the severe environment, so an effective method of diagnosing structural damage is urgently needed to locate the damage and evaluate its severity. Genetic algorithms have become some of the most important global optimization tools and been widely used in many fields in recent years because of their simple operation and strong robustness. Based on the natural frequencies and mode shapes of the structure, the damage diagnosis of a jacket offshore platform is attributed to an optimization problem and studied by using a genetic algorithm. According to the principle that the structural stiffness of a certain direction can be greatly affected only when the brace bar in the corresponding direction is damaged, an improved objective function was proposed in this paper targeting measurement noise and the characteristics of modal identification for offshore platforms. This function can be used as fitness function of a genetic algorithm, and both numerical simulation and physical model test results show that the improved method may locate the structural damage and evaluate the severity of a jacket offshore platform satisfactorily while improving the robustness of evolutionary searching and the reliability of damage diagnosis.
文摘Soil erosion is a critical process that is being studied in soil science, hydraulic engineering, and geotech- nical engineering. Among many societal and environmental impacts, soil erosion is a major cause for the failures of bridges. The erodibility of soil is determined by its physical and geochemical properties and is also affected by surrounding biological activities. In most of the current models for soil erosion, erodibility of non-cohesive soil is characterized by its median grain size (Dso), density, and porosity. The contribution to erodibility of the irregular shape of soil grains, which plays an important role in the mechanical and hydraulic properties of coarse-grained soils, is generally ignored. In this paper, a coupled computational fluid dynamics and discrete element method model is developed to analyze the influence of the shape of sand grain on soil erodibility. A numerical model for the drag force on spherical and non-spherical particles is verified by using the results from physical free settling experiments. Erosion of sand grains of different shapes is simulated in a virtual erosion function apparatus, a laboratory device used to mea- sure soil erodibility. The simulation results indicate that the grain shape has major effects on erodibility. Spherical particles do not show a critical velocity because of their low rolling resistance, but a critical velocity does exist for angular particles owing to grain interlocking. The erosion rate is proportional to the flow velocity for both spherical and non-spherical particles. The simulation result for angular particle erosion is fairly consistent with the experimental observations, implying that grain shape is an important factor affecting the erodibility of non-cohesive soils.
文摘In this study, a two-stage method is presented for identifying multiple damage scenarios. In the first stage, the damage locating vector (DLV) method using normalized cumulative energy (nce) is employed for damage localization in structures. In the second stage, the differential evolution algorithm (DE) is used for damage severity of the structures. In addition, in the second stage, a modification of an available objective function is made for handing the issue of symmetric structures. To verify the effectiveness of the present technique, numerical examples of a 72-bar space truss and a one-span steel portal frame are considered. In addition, the effect of noise on the performance of the identification results is also investigated. The numerical results show that the proposed combination gives good assessment of damage location and extent for multiple structural damage cases.