期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Roll System and Stock's Multi-parameter Coupling Dynamic Modeling Based on the Shape Control of Steel Strip 被引量:3
1
作者 Yang ZHANG Yan PENG +1 位作者 Jianliang SUN Yong ZANG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第3期614-624,共11页
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio... The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip. 展开更多
关键词 Roll system Rolling deformation area Coupling dynamic model mode shape function - Lateraldisplacement function
下载PDF
An Improved Method of Structure Damage Diagnosis for Jacket Platforms 被引量:1
2
作者 刘娟 黄维平 石湘 《Journal of Marine Science and Application》 2011年第4期485-489,共5页
In the exploitation of ocean oil and gas, many offshore structures may be damaged due to the severe environment, so an effective method of diagnosing structural damage is urgently needed to locate the damage and evalu... In the exploitation of ocean oil and gas, many offshore structures may be damaged due to the severe environment, so an effective method of diagnosing structural damage is urgently needed to locate the damage and evaluate its severity. Genetic algorithms have become some of the most important global optimization tools and been widely used in many fields in recent years because of their simple operation and strong robustness. Based on the natural frequencies and mode shapes of the structure, the damage diagnosis of a jacket offshore platform is attributed to an optimization problem and studied by using a genetic algorithm. According to the principle that the structural stiffness of a certain direction can be greatly affected only when the brace bar in the corresponding direction is damaged, an improved objective function was proposed in this paper targeting measurement noise and the characteristics of modal identification for offshore platforms. This function can be used as fitness function of a genetic algorithm, and both numerical simulation and physical model test results show that the improved method may locate the structural damage and evaluate the severity of a jacket offshore platform satisfactorily while improving the robustness of evolutionary searching and the reliability of damage diagnosis. 展开更多
关键词 damage diagnosis genetic algorithm objective function mode shape error function
下载PDF
Influence of particle shape on the erodibility of non-cohesive soil: Insights from coupled CFD-DEM simulations 被引量:7
3
作者 Yuan Guo Yang Yang Xiong (Bill) Yu 《Particuology》 SCIE EI CAS CSCD 2018年第4期12-24,共13页
Soil erosion is a critical process that is being studied in soil science, hydraulic engineering, and geotech- nical engineering. Among many societal and environmental impacts, soil erosion is a major cause for the fai... Soil erosion is a critical process that is being studied in soil science, hydraulic engineering, and geotech- nical engineering. Among many societal and environmental impacts, soil erosion is a major cause for the failures of bridges. The erodibility of soil is determined by its physical and geochemical properties and is also affected by surrounding biological activities. In most of the current models for soil erosion, erodibility of non-cohesive soil is characterized by its median grain size (Dso), density, and porosity. The contribution to erodibility of the irregular shape of soil grains, which plays an important role in the mechanical and hydraulic properties of coarse-grained soils, is generally ignored. In this paper, a coupled computational fluid dynamics and discrete element method model is developed to analyze the influence of the shape of sand grain on soil erodibility. A numerical model for the drag force on spherical and non-spherical particles is verified by using the results from physical free settling experiments. Erosion of sand grains of different shapes is simulated in a virtual erosion function apparatus, a laboratory device used to mea- sure soil erodibility. The simulation results indicate that the grain shape has major effects on erodibility. Spherical particles do not show a critical velocity because of their low rolling resistance, but a critical velocity does exist for angular particles owing to grain interlocking. The erosion rate is proportional to the flow velocity for both spherical and non-spherical particles. The simulation result for angular particle erosion is fairly consistent with the experimental observations, implying that grain shape is an important factor affecting the erodibility of non-cohesive soils. 展开更多
关键词 CFD-DEM Soil erosion Grain shape Erodibility of coarse-grained soil Erosion function apparatus mode
原文传递
A combination of damage locating vector method (DLV) and differential evolution algorithm (DE) for structural damage assessment 被引量:2
4
作者 T. NGUYEN-THOI A. TRAN-VIET +2 位作者 N. NGUYEN-MINH T. VO-DUY V. HO-HUU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2018年第1期92-108,共17页
In this study, a two-stage method is presented for identifying multiple damage scenarios. In the first stage, the damage locating vector (DLV) method using normalized cumulative energy (nce) is employed for damage... In this study, a two-stage method is presented for identifying multiple damage scenarios. In the first stage, the damage locating vector (DLV) method using normalized cumulative energy (nce) is employed for damage localization in structures. In the second stage, the differential evolution algorithm (DE) is used for damage severity of the structures. In addition, in the second stage, a modification of an available objective function is made for handing the issue of symmetric structures. To verify the effectiveness of the present technique, numerical examples of a 72-bar space truss and a one-span steel portal frame are considered. In addition, the effect of noise on the performance of the identification results is also investigated. The numerical results show that the proposed combination gives good assessment of damage location and extent for multiple structural damage cases. 展开更多
关键词 damage assessment damage locating vector method (DLV) differential evolution (DE) multiple damagelocation assurance criterion (MDLAC) mode shape error function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部