期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Mode transition and oscillation suppression in supersonic cavity flow 被引量:3
1
作者 Chao ZHANG Zhenhua WAN Dejun SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第7期941-956,共16页
Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation (DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition ... Supersonic flows past two-dimensional cavities with/without control are investigated by the direct numerical simulation (DNS). For an uncontrolled cavity, as the thickness of the boundary layer declines, transition of the dominant mode from the steady mode to the Rossiter Ⅱ mode and then to the Rossiter III mode is observed due to the change of vortex-corner interactions. Meanwhile, a low frequency mode appears. However, the wake mode observed in a subsonic cavity flow is absent in the current simulation. The oscillation frequencies obtained from a global dynamic mode decomposition (DMD) approach are consistent with the local power spectral density (PSD) analysis. The dominant mode transition is clearly shown by the dynamic modes obtained from the DMD. A passive control technique of substituting the cavity trailing edge with a quarter-circle is studied. As the effective cavity length increases, the dominant mode transition from the Rossiter Ⅱ mode to the Rossiter Ⅲ mode occurs. With the control, the pressure oscillations are reduced significantly. The interaction of the shear layer and the recirculation zone is greatly weakened, combined with weaker shear layer instability, responsible for the suppression of pressure oscillations. Moreover, active control using steady subsonic mass injection upstream of a cavity leading edge can stabilize the flow. 展开更多
关键词 supersonic cavity flow pressure oscillation mode transition vortex-corner interaction
下载PDF
Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure 被引量:2
2
作者 刘富成 贺亚峰 王晓菲 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期545-551,共7页
The influence of driving frequency on the discharge regime of a homogenous dielectric barrier discharge in argon at atmospheric pressure is studied through a one-dimensional self-consistent fluid model. The simulation... The influence of driving frequency on the discharge regime of a homogenous dielectric barrier discharge in argon at atmospheric pressure is studied through a one-dimensional self-consistent fluid model. The simulation results show that the discharge exhibits five notable discharge modes, namely the Townsend mode, stable glow mode, chaotic mode, asymmetric glow, and multiple period glow mode in a broad frequency range. The transition mechanisms of these modes should be attributed to the competition between the applied voltage and the memory voltage induced by the surface charges. 展开更多
关键词 Townsend mode glow mode mode transition fluid model
下载PDF
Relationship of mode transitions and standing waves in helicon plasmas 被引量:2
3
作者 Mingyang WU Chijie XIAO +7 位作者 Xiaogang WANG Yue LIU Min XU Chang TAN Tianchao XU Xiuming YU Renchuan HE Andong XU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期80-86,共7页
Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstan... Helicon wave plasma sources have the well-known advantages of high efficiency and high plasma density, with broad applications in many areas. The crucial mechanism lies with mode transitions, which has been an outstanding issue for years. We have built a fluid simulation model and further developed the Peking University Helicon Discharge code. The mode transitions, also known as density jumps, of a single-loop antenna discharge are reproduced in simulations for the first time. It is found that large-amplitude standing helicon waves(SHWs) are responsible for the mode transitions, similar to those of a resonant cavity for laser generation.This paper intends to give a complete and quantitative SHW resonance theory to explain the relationship of the mode transitions and the SHWs. The SHW resonance theory reasonably explains several key questions in helicon plasmas, such as mode transition and efficient power absorption, and helps to improve future plasma generation methods. 展开更多
关键词 helicon plasma mode transition standing wave resonance
下载PDF
Exact Solutions and Mode Transition for Out-of-Plane Vibrations of Non-uniform Beams with Variable Curvature 被引量:1
4
作者 Sen-Yung Lee Shueei-Muh Lin Kai-Ping Chang 《Computers, Materials & Continua》 SCIE EI 2016年第1期1-19,共19页
The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexura... The two coupled governing differential equations for the out-of-plane vibrations of non-uniform beams with variable curvature are derived via the Hamilton’s principle.These equations are expressed in terms of flexural and torsional displacements simultaneously.In this study,the analytical method is proposed.Firstly,two physical parameters are introduced to simplify the analysis.One derives the explicit relations between the flexural and the torsional displacements which can also be used to reduce the difficulty in experimental measurements.Based on the relation,the two governing characteristic differential equations with variable coefficients can be uncoupled into a sixth-order ordinary differential equation in terms of the flexural displacement only.When the material and geometric properties of the beam are in arbitrary polynomial forms,the exact solutions with regard to the outof-plane vibrations of non-uniform beams with variable curvature can be obtained by the recurrence formula.In addition,the mode transition mechanism is revealed and the influence of several parameters on the vibration of the non-uniform beam with variable curvature is explored. 展开更多
关键词 Out-of-plane vibration Variable curvature Non-uniform beam Exact solution mode transition
下载PDF
Mode Transitions in Vortex-induced Vibrations of a Flexible Pipe near Plane Boundary 被引量:1
5
作者 Xiaochao Li YongxueWang +2 位作者 Guoyu Wang Meirong Jiang Ying Sun 《Journal of Marine Science and Application》 2013年第3期334-343,共10页
A pipe model with a mass ratio(mass/displaced mass) of 4.30 was tested to investigate the vortex-induced vibrations of submarine pipeline spans near the seabed.The pipe model was designed as a bending stiffness-domi... A pipe model with a mass ratio(mass/displaced mass) of 4.30 was tested to investigate the vortex-induced vibrations of submarine pipeline spans near the seabed.The pipe model was designed as a bending stiffness-dominated beam.The gap ratios(gap to diameter ratio) at the pipe ends were 4.0,6.0,and 8.0.The flow velocity was systematically varied in the 0-16.71 nondimensional velocity range based on the first natural frequency.The mode transition between the first and the second mode as the flow velocity increases was investigated.At various transition flow velocities,the research indicates that the peak frequencies with respect to displacement are not identical along the pipe,nor the frequencies associated with the peak of the amplitude spectra for the first four modes as well.The mode transition is associated with a continuous change in the amplitude,but there's a jump in frequency,and a gradual process along the pipe length. 展开更多
关键词 submarine pipeline span flexible pipe vortex-induced vibrations mode transition
下载PDF
Keyhole formation and its characteristics in laser welding mode transition 被引量:1
6
作者 秦国梁 高进强 林尚扬 《China Welding》 EI CAS 2010年第4期11-14,共4页
Keyhole is the most important characteristic for laser deep penetration welding, and its formation indicates the beginning of laser deep penetration welding mode. The keyhole developing process was analyzed and the ke... Keyhole is the most important characteristic for laser deep penetration welding, and its formation indicates the beginning of laser deep penetration welding mode. The keyhole developing process was analyzed and the keyhole formation time was calculated according to welding speed and the length of weld bead formed in the keyhole formation process. The results showed that the keyhole forms in 40 -70 ms at different rate of change of laser power. In laser deep penetration welding process, the variation of light intensity radiated by laser induced plasma can identify the keyhole formation, but it can not be used to estimate the keyhole formation time because of delay effect. 展开更多
关键词 laser welding mode transition keyhole formation laser induced plasma
下载PDF
Heat Transfer and Mode Transition for Laser Ablation Subjected to Supersonic Airflow
7
作者 黄亿辉 宋宏伟 黄晨光 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期44-47,共4页
When laser ablation is subjected to supersonic flow, the influence mechanism of airflow on laser ablation behavior is still unclear. A coupled thermal-fluid-structure model is presented to investigate the influence of... When laser ablation is subjected to supersonic flow, the influence mechanism of airflow on laser ablation behavior is still unclear. A coupled thermal-fluid-structure model is presented to investigate the influence of supersonic airflow on the development of a laser ablation pit. Results show that the aerodynamic convection cooling effect not only reduces the ablation velocity but also changes the symmetry morphology of the ablation pit due to the non-uniform convective heat transfer. Flow mode transition is also observed when the pit becomes deeper, and significant change in flow pattern and heat transfer behavior are found when the open mode is transformed into the closed mode. 展开更多
关键词 mode of in IS Heat Transfer and mode transition for Laser Ablation Subjected to Supersonic Airflow for
下载PDF
Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
8
作者 徐会静 赵书霞 +3 位作者 高飞 张钰如 李雪春 王友年 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期296-302,共7页
A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to in- vestigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas a... A new type of two-dimensional self-consistent fluid model that couples an equivalent circuit module is used to in- vestigate the mode transition characteristics and hysteresis in hydrogen inductively coupled plasmas at different pressures, by varying the series capacitance of the matching box. The variations of the electron density, temperature, and the circuit electrical properties are presented. As cycling the matching capacitance, at high pressure both the discontinuity and hysteresis appear for the plasma parameters and the transferred impedances of both the inductive and capacitive discharge components, while at low pressure only the discontinuity is seen. The simulations predict that the sheath plays a determi- native role on the presence of discontinuity and hysteresis at high pressure, by influencing the inductive coupling efficiency of applied power. Moreover, the values of the plasma transferred impedances at different pressures are compared, and the larger plasma inductance at low pressure due to less collision frequency, as analyzed, is the reason why the hysteresis is not seen at low pressure, even with a wider sheath. Besides, the behaviors of the coil voltage and current parameters during the mode transitions are investigated. They both increase (decrease) at the E to H (H to E) mode transition, indicating an improved (worsened) inductive power coupling efficiency. 展开更多
关键词 inductively coupled plasmas mode transition HYSTERESIS fluid simulation
下载PDF
Investigation of E-H mode transition in magnetic-pole-enhanced inductively coupled neon-argon mixture plasma
9
作者 Zahid Iqbal KHATTAK Abdul Waheed KHAN +1 位作者 Faiq JAN Muhammad SHAFIQ 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第6期110-119,共10页
In this paper,E-H mode transition in magnetic-pole-enhanced inductively coupled neon-argon mixture plasma is investigated in terms of fundamental plasma parameters as a function of argon fraction(0%-100%),operating pr... In this paper,E-H mode transition in magnetic-pole-enhanced inductively coupled neon-argon mixture plasma is investigated in terms of fundamental plasma parameters as a function of argon fraction(0%-100%),operating pressure(1 Pa,5 Pa,10 Pa and 50 Pa),and radio frequency(RF)power(5-100 W).An RF compensated Langmuir probe and optical emission spectroscopy are used for the diagnostics of the plasma under study.Owing to the lower ionization potential and higher collision cross-section of argon,when its fraction in the discharge is increased,the mode transition occurs at lower RF power;i.e.for 0%argon and1 Pa pressure,the threshold power of the E-H mode transition is 65 W,which reduces to 20 W when the argon fraction is increased.The electron density increases with the argon fraction at afixed pressure,whereas the temperature decreases with the argon fraction.The relaxation length of the low-energy electrons increases,and decreases for high-energy electrons with argon fraction,due to the Ramseur effect.However,the relaxation length of both groups of electrons decreases with pressure due to reduction in the mean free path.The electron energy probability function(EEPF)profiles are non-Maxwellian in E-mode,attributable to the nonlocal electron kinetics in this mode;however,they evolve to Maxwellian distribution when the discharge transforms to H-mode due to lower electron temperature and higher electron density in H-mode.The tail of the measured EEPFs is found to deplete in both E-and H-modes when the argon fraction in the discharge is increased,because argon has a much lower excitation potential(11.5 eV)than neon(16.6 eV). 展开更多
关键词 Ne-Ar MaPE-ICP Langmuir probe OES electron temperature electron density mode transition
下载PDF
Spatial variation behaviors of argon inductively coupled plasma during discharge mode transition
10
作者 高飞 李雪春 +1 位作者 赵书霞 王友年 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期385-390,共6页
A Langmuir probe and an ICCD are employed to study the discharge mode transition in Ar inductively coupled plasma. Electron density and plasma emission intensity are measured during the E (capacitive discharge) to H... A Langmuir probe and an ICCD are employed to study the discharge mode transition in Ar inductively coupled plasma. Electron density and plasma emission intensity are measured during the E (capacitive discharge) to H (inductive discharge) mode transitions at different pressures. It is found that plasma exists with a low electron density and a weak emission intensity in the E mode, while it has a high electron density and a strong emission intensity in the H mode. Meanwhile, the plasma emission intensity spatial (2D an asymmetric profile in the E mode. Moreover, the at high pressure, but increase almost continuously at image) profile is symmetrical in the H mode, but the 2D image is electron density and emission intensity jump up discontinuously the E to H mode transition under low pressure. 展开更多
关键词 mode transition inductively coupled plasma Langmuir probe ICCD
下载PDF
Driving frequency effects on the mode transition in capacitively coupled argon discharges
11
作者 刘相梅 宋远红 王友年 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期323-328,共6页
A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-613 MHz. The model inc... A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-613 MHz. The model incorporates the density and flux balance of electron and ion, electron energy balance, as well as Poisson's equation. In our simulation, the discharge experiences mode transition as the driving frequency increases, from the γ regime in which the discharge is maintained by the secondary electrons emitted from the electrodes under ion bombardment, to the a regime in which sheath oscillation is responsible for most of the electron heating in the discharge sustaining. The electron density and electron temperature at the centre of the discharge, as well as the ion flux on the electrode are figured out as a function of the driving frequency, to confirm the two regimes and transition between them. The effects of gas pressure, secondary electron emission coefficient and applied voltage on the discharge are also discussed. 展开更多
关键词 capacitively coupled plasma mode transition Ar discharge
下载PDF
Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
12
作者 Peng-Cheng Du Fei Gao +2 位作者 Xiao-Kun Wang Yong-Xin Liu You-Nian Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期371-377,共7页
This paper presents the evolution of the electronegativity with the applied power during the E to H mode transition in a radio frequency(rf)inductively coupled plasma(ICP)in a mixture of Ar and O2.The densities of the... This paper presents the evolution of the electronegativity with the applied power during the E to H mode transition in a radio frequency(rf)inductively coupled plasma(ICP)in a mixture of Ar and O2.The densities of the negative ion and the electron,as well as their ratio,i.e.,the electronegativity,are measured as a function of the applied power by laser photo-detachment combined with a microwave resonance probe,under different pressures and O2 contents.Meanwhile,the optical emission intensities at Ar 750.4 nm and O 844.6 nm are monitored via a spectrograph.It was found that by increasing the applied power,the electron density and the optical emission intensity show a similar trench,i.e.,they increase abruptly at a threshold power,suggesting that the E to H mode transition occurs.With the increase of the pressure,the negative ion density presents opposite trends in the E-mode and the H-mode,which is related to the difference of the electron density and energy for the two modes.The emission intensities of Ar 750.4 nm and O 844.6 nm monotonously decrease with increasing the pressure or the O2 content,indicating that the density of high-energy electrons,which can excite atoms,is monotonically decreased.This leads to an increase of the negative ion density in the H-mode with increasing the pressure.Besides,as the applied power is increased,the electronegativity shows an abrupt drop during the E-to H-mode transition. 展开更多
关键词 ELECTRONEGATIVITY E to H mode transition radio frequency inductively coupled plasma
下载PDF
Welding mode transition and process stability in high power laser welding
13
作者 张旭东 任家烈 陈武柱 《China Welding》 EI CAS 1997年第1期64-69,共6页
For high-power CO2 laser welding, besides two well known stable welding processes, i.e. stable deep penetration welding (DPW) and stable heat conduction welding (HCW), the authors have found the third welding process,... For high-power CO2 laser welding, besides two well known stable welding processes, i.e. stable deep penetration welding (DPW) and stable heat conduction welding (HCW), the authors have found the third welding process, i.e. unstable-mode welding (UMW) under the certain condition. UMW has its basic feature that the two welding modes (DPW and HCW) appear intermittently, with jumping of penetration depth and weld width between large and small levels. In this paper, effects of welding parameters (focal position, laser power and traveling speed) on laser welding mode and weld appearance have been comprehensively studied. Double-U curves of laser welding mode transition have been obtained, which indicate the ranges of the three mentioned welding processes. This work affords science foundation for selecting the welding process parameters correctly and obtaining stable laser welding. 展开更多
关键词 laser welding deep penetration welding (DPW) heat conduction welding(HCW) unstable-mode welding (UMW) welding mode transition
下载PDF
Optical detection method of discharge mode transition of inductively coupled plasma in an atmosphere-breathing electric propulsion system
14
作者 Yuxuan ZHONG Yu ZHANG +1 位作者 Jianjun WU Peng ZHENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期172-183,共12页
Plasma discharge stability is an important problem in atmosphere-breathing electric propulsion system when maintaining long-term missions at ultra-low earth orbit.This paper designed an inductively coupled plasma sour... Plasma discharge stability is an important problem in atmosphere-breathing electric propulsion system when maintaining long-term missions at ultra-low earth orbit.This paper designed an inductively coupled plasma source to imitate the ionization section.The effect of inflow rate and Radio Frequency(RF)power on the plasma discharge mode transition is experimentally studied.A discharge mode detection method is proposed,which determines the discharge mode by identifying the morphology of the plasma core.By using the method,the discharge mode transition is quantified and a control model based on the parameter sensitivity is constructed.To verify the method,the spectra are measured and the electron temperature spatial distribution is calculated.And the method has been proven effective.The results show that the inductively coupled discharge contains capacitive components affected by the mass flow rate and the radio frequency power.The plasma characteristics can be maintained stably by controlling the radio frequency power when the mass flow rate randomly changes in a certain range.It is demonstrated that the application of detection method effectively identifies the discharge mode,which is a promising active control method for the plasma discharge mode. 展开更多
关键词 Atmosphere-breathing electric propulsion Inductively coupled plasma Discharge mode transition Optical diagnosis Ultra-low earth orbit
原文传递
Simulation of mode transitions in capacitively coupled Ar/O_(2) plasmas
15
作者 Xiangmei LIU Shuren ZHANG +2 位作者 Shuxia ZHAO Hongying LI Xiaohui REN 《Plasma Science and Technology》 SCIE EI CAS 2024年第11期96-106,共11页
In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations.... In this work,the effects of the frequency,pressure,gas composition,and secondary-electron emission coefficient on the discharge mode in capacitively coupled Ar/O_(2) plasmas were carefully studied through simulations.Three discharge modes,i.e.,α,γ,and drift-ambipolar(DA),were considered in this study.The results show that a mode transition from theγ-DA hybrid mode dominated by theγmode to the DA-αhybrid mode dominated by the DA mode is induced by increasing the frequency from 100 k Hz to 40 MHz.Furthermore,the electron temperature decreases with increasing frequency,while the plasma density first decreases and then increases.It was found that the electronegativity increases slightly with increasing pressure in the lowfrequency region,and it increases notably with increasing pressure in the high-frequency region.It was also observed that the frequency corresponding to the mode transition fromγto DA decreased when the secondary-electron emission coefficient was decreased.Finally,it was found that increasing the oxygen content weakens theγmode and enhances the DA mode.More importantly,the density of oxygen atoms and ozone will increase greatly with increasing oxygen content,which is of great significance for industrial applications. 展开更多
关键词 mode transition processing parameters Ar/O_(2)discharges
下载PDF
A corridor-based flight mode transition strategy for agile ducted-fan tail-sitter UAV:Altitude-hold transition
16
作者 Zihuan CHENG Hailong PEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期330-345,共16页
As an attractive transition approach,the altitude-hold transition is a special type of super-maneuvering and the vertical/horizontal flight mode transition that an agile aircraft conducts at fixed altitude.However,it ... As an attractive transition approach,the altitude-hold transition is a special type of super-maneuvering and the vertical/horizontal flight mode transition that an agile aircraft conducts at fixed altitude.However,it is still challenging to implement an autonomous control of the altitude-hold transition while the existing optimal transition planning methods cannot avoid an evident altitude change during the transition process.This paper proposes a corridor-based flight mode transition strategy and presents a successful flight demonstration of the altitude-hold transition on a small ducted-fan tail-sitter unmanned aerial vehicle.In the proposed corridor-based methodology,we model and analyze the transition corridor,concentrate on the dynamic characteristics of the altitude-hold transition,and emphasize that a valid transition trajectory should be governed by its transition corridor.The identified transition corridor reveals that for a given velocity trajectory,the solution for the corresponding trajectories of pitch angle and thrust is unique.Based on this,the transition trajectory generation problem is addressed simply on the velocity-acceleration plane.Furthermore,a proper flight control scheme is devised to track the generated transition trajectories.Finally,the effectiveness of the proposed method is verified through practical flight tests,in which the altitude change is less than 1.1 m during the entire transition course. 展开更多
关键词 Altitude-hold transition Flight mode transition control transition corridor Tail-sitter UAV Ducted-fan
原文传递
Thermal behavior of an isolator with mode transition inducing back-pressure of a dual-mode scramjet 被引量:3
17
作者 Yang Qingchun Bao Wen +2 位作者 Chetehouna Khaled Zhang Silong Gascoin Nicolas 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第2期595-601,共7页
Combustion mode transition is a valuable and challenging research area in dual-mode scramjet engines.The thermal behavior of an isolator with mode transition inducing backpressure is investigated by direct-connect dua... Combustion mode transition is a valuable and challenging research area in dual-mode scramjet engines.The thermal behavior of an isolator with mode transition inducing backpressure is investigated by direct-connect dual-mode scramjet experiments and theoretical analysis.Combustion experiments are conducted under the incoming airflow conditions of total temperature1270 K and Mach 2.A small increment of the fuel equivalence ratio is scheduled to trigger mode transition.Correspondingly,the variation of the coolant flow rate is very small.Based on the measured wall pressures,the heat-transfer model can quantify the thermal state variation of the engine with active cooling.Compared with the combustor,mode transition has a greater effect on the isolator thermal behavior,and it significantly changes the isolator heat-flux and wall temperature.To further study the isolator thermal behavior from flight Mach 4 to Mach 7,a theoretical analysis is carried out.Around the critical point of combustion mode transition,sudden changes of the isolator flowfield and thermal state are discussed. 展开更多
关键词 Combustion mode Dual-mode scramjet ISOLATOR mode transition Thermal behavior
原文传递
Unsteady flow characteristic analysis of turbine based combined cycle(TBCC)inlet mode transition10.1016/j.jppr.2015.07.006 被引量:5
18
作者 Jun Liu Huacheng Yuan Rongwei Guo 《Propulsion and Power Research》 SCIE 2015年第3期141-149,共9页
A turbine based combined cycle(TBCC)propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition,at which point,the propulsion system performs a“mode tr... A turbine based combined cycle(TBCC)propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition,at which point,the propulsion system performs a“mode transition”from the turbine to ramjet engine.Smooth inlet mode transition is accomplished when flow is diverted from one flowpath to the other,without experiencing unstart or buzz.The smooth inlet mode transition is a complex unsteady process and it is one of the enabling technologies for combined cycle engine to become a functional reality.In order to unveil the unsteady process of inlet mode transition,the research of over/under TBCC inlet mode transition was conducted through a numerical simulation.It shows that during the mode transition the terminal shock oscillates in the inlet.During the process of inlet mode transition mass flow rate and Mach number of turbojet flowpath reduce with oscillation.While in ramjet flowpath the flow field is non-uniform at the beginning of inlet mode transition.The speed of mode transition and the operation states of the turbojet and ramjet engines will affect the motion of terminal shock.The result obtained in present paper can help us realize the unsteady flow characteristic during the mode transition and provide some suggestions for TBCC inlet mode transition based on the smooth transition of thrust. 展开更多
关键词 Airbreathing hypersonic vehicle Turbine based combined cycle(TBCC) Inlet mode transition Unsteady numerical simulation Shock oscillation
原文传递
Experimental investigation of the effect of the wall proximity on the mode transition of a vortex-induced vibrating flexible pipe and the evolution of wall-impact 被引量:2
19
作者 Hong-jun Zhu Hong-lei Zhao +1 位作者 Yi-pu Xie Xu Zhang 《Journal of Hydrodynamics》 SCIE EI CSCD 2022年第2期329-353,共25页
The present work experimentally investigates the vortex-induced vibration(VIV)and the pipe-wall impact of a flexible pipe in an oblique flow.The flexible pipe with an aspect ratio of 86.67 and an oblique angle of 30&#... The present work experimentally investigates the vortex-induced vibration(VIV)and the pipe-wall impact of a flexible pipe in an oblique flow.The flexible pipe with an aspect ratio of 86.67 and an oblique angle of 30°is immersed in the water flow with the initial gap ratio in the range of 0.2–0.8 and 49.5.The space-time varying oscillation responses in both the in-line and cross-flow directions are recorded using the non-intrusive optical measurement with high-speed cameras in the normal reduced velocity range of 3.40–14.43.The oblique flow induces the spatial variations of the inclination angle to the flexible pipe as a result of the bending deformation during the oscillation.Consequently,the flexible pipe experiences an asymmetrical response along the span and an out-of-sync mode transition in the in-line and cross-flow directions.As the gap ratio decreases,the VIV response is suppressed,and the vibration regions of lower modes are prolonged with the result of the delay of higher excited modes.Additionally,the wall proximity results in an upward deflection of the equilibrium position,and this offset is enlarged with the decrease of the gap ratio.The occurrence of the pipe-wall impact depends on the amplitude of the spatial-temporal varying oscillation and the dominant response mode.Five pipe-wall impact patterns are proposed in terms of the number and the length of the contact pipe segments.The evolution of the pipe-wall impact pattern with the increase of the normal reduced velocity is closely related to the variations of the dominant response mode and the amplitude and the alteration of its spatial distribution. 展开更多
关键词 Wall proximity oblique flow wall impact mode transition vortex-induced vibration(VIV)
原文传递
Transverse mode transition and LG_(01)-mode generation in an end-pumped Nd:YVO_4 laser 被引量:2
20
作者 姚瑶 夏克贵 +2 位作者 康民强 方志强 李建郎 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第12期59-62,共4页
A laser-diode end-pumped Nd:YVO4 crystal laser is demonstrated to emit the first-order Laguerre- Gaussian (LGm) mode with 502-mW laser power and 22% slope efficiency. Tile LGm-mode is lased only when the pumping ar... A laser-diode end-pumped Nd:YVO4 crystal laser is demonstrated to emit the first-order Laguerre- Gaussian (LGm) mode with 502-mW laser power and 22% slope efficiency. Tile LGm-mode is lased only when the pumping area locates in the central part of the laser crystal's front surface, and thereafter the symmetrical LGm-HGol-TEM00 mode transition happens when laser crystal is moved laterally inside several-tens-micron area. The possible mechanism responsible for the phenomenon of symmetrical mode transition is also discussed. 展开更多
关键词 mode generation in an end-pumped Nd Transverse mode transition and LG ND
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部