Mixed-mode I-II crack-based fatigue crack propagation(FCPⅠ-Ⅱ)usually occurs in engineering structures;however,no theoretical formula or effective compliance test methods have been established for FCPI-IIto date.For ...Mixed-mode I-II crack-based fatigue crack propagation(FCPⅠ-Ⅱ)usually occurs in engineering structures;however,no theoretical formula or effective compliance test methods have been established for FCPI-IIto date.For mixed-mode I-II flawed components,based on the principle of mean-value energy equivalence,we propose a theoretical method to describe the relationship between material elastic parameters,geometrical dimensions,load(or displacement),and energy.Based on the maximum circumferential stress criterion,we propose a uniform compliance model for compact tensile shear(CTS)specimens with horizontal cracks deflecting and propagating(flat-folding propagation)under different loading angles,geometries,and materials.Along with an innovative design of the fixture of CTS specimens used for FCPI-IItests,we develop a new compliancebased testing method for FCPⅠ-Ⅱ.For the 30Cr2Ni4MoV rotor steel,the FCP rates of modeⅠ,modeⅡ,and mixed-modeⅠ-Ⅱcracks were obtained via FCP tests using compact tension,Arcan,and CTS specimens,respectively.The obtained da/d N versusΔJ curves of the FCP rates are close.The loading angleαand dimensionless initial crack length a0/W demonstrated negligible effects on the FCP rates.Hence,the FCP rates of mode I crack can be used to predict the residual life of structural crack propagation.展开更多
In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests ...In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests were implemented in the drop plate impact device.Strain gauges were employed to measure impact loads and crack initiation time.The corresponding numerical model was established by using the dynamic finite difference program AUTODYN,and the experimental-numerical method and ABAQUS code were utilized to obtain the initial fracture toughness of the crack.Using experiments and numerical research,we concluded that the DCCP specimen is suitable for measuring the initial fracture toughness of pure mode Ⅰ and mode Ⅱ cracks at the same time;the dynamic initiation toughness increases with the increase of loading rate and the crack initiation time decreases with increasing loading rate;the initiation toughness of mode Ⅱ crack is 0.5 times that of mode Ⅰ crack when subjected to the same loading rate.For the pre-crack in the vicinity of the bottom of a sample,when its length increases from 20 to 100 mm,the dynamic initiation toughness of the pure mode Ⅰ crack gradually decreases,and the longer the lower crack length is,the easier the crack would initiate,but the dynamic initiation toughness of pure mode Ⅱ crack varies little.展开更多
Hydrogen induced cracking(HIC)of 0.3% C,1% Cr,1% Mn,1% Si high strength steel has been studied under simple mode Ⅰ,mode Ⅱ and(Ⅰ+Ⅱ)mixed mode loading conditions.Af- ter being hydrogen-charged in IN H_2SO_4 solution...Hydrogen induced cracking(HIC)of 0.3% C,1% Cr,1% Mn,1% Si high strength steel has been studied under simple mode Ⅰ,mode Ⅱ and(Ⅰ+Ⅱ)mixed mode loading conditions.Af- ter being hydrogen-charged in IN H_2SO_4 solution,the material behaved hydrogen embrittlement in all the cases studied.The threshold K_(ⅡH)/K_(ⅡX) of HIC under mode Ⅱ load- ing was 0.27,which was nearly the same as that K(ⅠH)/K_(ⅠX)=0.29 under mode Ⅰ loading. While the thresholds of-HIC under(Ⅰ+Ⅱ)mixed mode loading were 0.36,0.41 and 0.37 cor- responding to the K_Ⅱ/K_Ⅰ ratio of 0.27,0.4 and O.81.The results show that simple mode Ⅰ or mode Ⅱ loading is more susceptible to hydrogen embrittlement than(Ⅰ+Ⅱ)mixed mode. For explaining the experimental results,the effects of triaxial stress as well as plastic deformation ahead of crack tip has been discussed.展开更多
It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times ...It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times of that of mode Ⅰ.Above results illustrate that the resistance of mode Ⅱ crack growth was higher than that of mode Ⅰ,the former resulting from roughness-induced shear resistance,the latter,crack closure. The mode Ⅱ component can play two important roles in near-threshold fatigue crack growth:(1)increasing crack tip plasticity which accelerates the crack growth and(2)intro- ducing crack surface contact and rubbing to reduce the crack propagation rate.By means of crack closure,the quantity of shear resistance was easily solved in this paper.The friction shear stress strength factor range of mode Ⅱ,K_,is still much higher than the closure stress strength factor range of mode Ⅰ,K_(Ⅰ,cl).This illustrated that the roughness enlarged the second role and played a role of shielding crack tip from mode Ⅱ crack.展开更多
In recent years,the issue of aircraft icing has gained widespread recognition.The breaking and detachment of dynamic ice can pose a threat to flight safety.However,the shedding and fracture mechanisms of dynamic ice a...In recent years,the issue of aircraft icing has gained widespread recognition.The breaking and detachment of dynamic ice can pose a threat to flight safety.However,the shedding and fracture mechanisms of dynamic ice are unclear and cannot meet the engineering needs of ice-shedding hazard assessment.Therefore,studying the fracture toughness of ice bodies has extremely important practical significance.To address this issue,this article uses a centrally cracked Brazilian disk(CCBD)specimen to measure the pure modeⅠtoughness and pure modeⅡfracture toughness of freshwater ice at different loading rates.The mixed-mode(Ⅰ–Ⅱ)fracture characteristics of ice are discussed,and the experimental results are compared and analyzed with the theoretical values of the generalized maximum tangential stress(GMTS)criterion considering the influence of T-stress.The results indicated that as the loading rate increases,the pure modeⅠtoughness and pure modeⅡfracture toughness of freshwater ice decrease,and the fracture toughness of freshwater ice is more sensitive to the loading rate.Ⅰn terms of fracture criteria,the theoretical value of the ratio of pure modeⅡfracture toughness to pure modeⅠfracture toughness based on the GMTS criterion is in good agreement with the experimental value,while the theoretical value based on the maximum tangential stress(MTS)criterion deviates significantly from the experimental value,indicating that the GMTS criterion considering the influence of T-stress can better predict the experimental results.展开更多
基金the National Key Research and Development Program of China(Grant No.2017YFB0702200)the National Natural Science Foundation of China(Grant No.11872320)the Policy Guidance Program of Jiangsu Province(Grant No.BZ2020057)。
文摘Mixed-mode I-II crack-based fatigue crack propagation(FCPⅠ-Ⅱ)usually occurs in engineering structures;however,no theoretical formula or effective compliance test methods have been established for FCPI-IIto date.For mixed-mode I-II flawed components,based on the principle of mean-value energy equivalence,we propose a theoretical method to describe the relationship between material elastic parameters,geometrical dimensions,load(or displacement),and energy.Based on the maximum circumferential stress criterion,we propose a uniform compliance model for compact tensile shear(CTS)specimens with horizontal cracks deflecting and propagating(flat-folding propagation)under different loading angles,geometries,and materials.Along with an innovative design of the fixture of CTS specimens used for FCPI-IItests,we develop a new compliancebased testing method for FCPⅠ-Ⅱ.For the 30Cr2Ni4MoV rotor steel,the FCP rates of modeⅠ,modeⅡ,and mixed-modeⅠ-Ⅱcracks were obtained via FCP tests using compact tension,Arcan,and CTS specimens,respectively.The obtained da/d N versusΔJ curves of the FCP rates are close.The loading angleαand dimensionless initial crack length a0/W demonstrated negligible effects on the FCP rates.Hence,the FCP rates of mode I crack can be used to predict the residual life of structural crack propagation.
基金Projects(U19A2098,1210021843)supported by the National Natural Science Foundation of ChinaProject(2021SCU12130)supported by Fundamental Research Funds for the Central Universities,China+1 种基金Project(2021YJ0511)supported by the Sichuan Science and Technology Program,ChinaProjects(DESEYU202205,DESE202005)supported by the Open Fund of Key Laboratory of Deep Earth Science and Engineering,China。
文摘In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests were implemented in the drop plate impact device.Strain gauges were employed to measure impact loads and crack initiation time.The corresponding numerical model was established by using the dynamic finite difference program AUTODYN,and the experimental-numerical method and ABAQUS code were utilized to obtain the initial fracture toughness of the crack.Using experiments and numerical research,we concluded that the DCCP specimen is suitable for measuring the initial fracture toughness of pure mode Ⅰ and mode Ⅱ cracks at the same time;the dynamic initiation toughness increases with the increase of loading rate and the crack initiation time decreases with increasing loading rate;the initiation toughness of mode Ⅱ crack is 0.5 times that of mode Ⅰ crack when subjected to the same loading rate.For the pre-crack in the vicinity of the bottom of a sample,when its length increases from 20 to 100 mm,the dynamic initiation toughness of the pure mode Ⅰ crack gradually decreases,and the longer the lower crack length is,the easier the crack would initiate,but the dynamic initiation toughness of pure mode Ⅱ crack varies little.
文摘Hydrogen induced cracking(HIC)of 0.3% C,1% Cr,1% Mn,1% Si high strength steel has been studied under simple mode Ⅰ,mode Ⅱ and(Ⅰ+Ⅱ)mixed mode loading conditions.Af- ter being hydrogen-charged in IN H_2SO_4 solution,the material behaved hydrogen embrittlement in all the cases studied.The threshold K_(ⅡH)/K_(ⅡX) of HIC under mode Ⅱ load- ing was 0.27,which was nearly the same as that K(ⅠH)/K_(ⅠX)=0.29 under mode Ⅰ loading. While the thresholds of-HIC under(Ⅰ+Ⅱ)mixed mode loading were 0.36,0.41 and 0.37 cor- responding to the K_Ⅱ/K_Ⅰ ratio of 0.27,0.4 and O.81.The results show that simple mode Ⅰ or mode Ⅱ loading is more susceptible to hydrogen embrittlement than(Ⅰ+Ⅱ)mixed mode. For explaining the experimental results,the effects of triaxial stress as well as plastic deformation ahead of crack tip has been discussed.
文摘It is obtained in this paper that the fatigue threshold value of mode H was 1.9 times of that of mode Ⅰ in dual-phase steel(DPS),and the normal stress intensity factor range oJ mode Ⅱ branch crack tip was 2.2 times of that of mode Ⅰ.Above results illustrate that the resistance of mode Ⅱ crack growth was higher than that of mode Ⅰ,the former resulting from roughness-induced shear resistance,the latter,crack closure. The mode Ⅱ component can play two important roles in near-threshold fatigue crack growth:(1)increasing crack tip plasticity which accelerates the crack growth and(2)intro- ducing crack surface contact and rubbing to reduce the crack propagation rate.By means of crack closure,the quantity of shear resistance was easily solved in this paper.The friction shear stress strength factor range of mode Ⅱ,K_,is still much higher than the closure stress strength factor range of mode Ⅰ,K_(Ⅰ,cl).This illustrated that the roughness enlarged the second role and played a role of shielding crack tip from mode Ⅱ crack.
基金supported by the National Natural Science Foundation of China(Nos.12132019 and 11872042)the Open Fund for Key Laboratory of Deep Underground Science and Engineering of Ministry of Education(No.DESEYU202301)+1 种基金the 2023 Open Project of Failure Mechanics and Engineering Disaster Prevention,Key Lab of Sichuan Province(No.FMEDP202306)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0043).
文摘In recent years,the issue of aircraft icing has gained widespread recognition.The breaking and detachment of dynamic ice can pose a threat to flight safety.However,the shedding and fracture mechanisms of dynamic ice are unclear and cannot meet the engineering needs of ice-shedding hazard assessment.Therefore,studying the fracture toughness of ice bodies has extremely important practical significance.To address this issue,this article uses a centrally cracked Brazilian disk(CCBD)specimen to measure the pure modeⅠtoughness and pure modeⅡfracture toughness of freshwater ice at different loading rates.The mixed-mode(Ⅰ–Ⅱ)fracture characteristics of ice are discussed,and the experimental results are compared and analyzed with the theoretical values of the generalized maximum tangential stress(GMTS)criterion considering the influence of T-stress.The results indicated that as the loading rate increases,the pure modeⅠtoughness and pure modeⅡfracture toughness of freshwater ice decrease,and the fracture toughness of freshwater ice is more sensitive to the loading rate.Ⅰn terms of fracture criteria,the theoretical value of the ratio of pure modeⅡfracture toughness to pure modeⅠfracture toughness based on the GMTS criterion is in good agreement with the experimental value,while the theoretical value based on the maximum tangential stress(MTS)criterion deviates significantly from the experimental value,indicating that the GMTS criterion considering the influence of T-stress can better predict the experimental results.