This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented...This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented, which not only avoids the singularity in the traditional terminal sliding mode, but also addresses the mismatched problems in the nonlinear control system. Secondly, a new ITSM controller with finite convergence time based on the backstepping technique is derived for a cascaded nonlinear dynamical system with mismatched uncertainties. Thirdly, the convergence time of ITSM is analyzed, whose convergence speed is faster than those of two nonsingular terminal sliding modes.Finally, simulation results are presented in order to evaluate the effectiveness of ITSM control strategies for mismatched uncertainties.展开更多
The electric admittance of a compound system composed of a thickness-shear mode (TSM) quartz crystal resonator (QCR) and an array of surface viscoelastic micro-beams (MBs) is studied. The governing equations of ...The electric admittance of a compound system composed of a thickness-shear mode (TSM) quartz crystal resonator (QCR) and an array of surface viscoelastic micro-beams (MBs) is studied. The governing equations of the MBs are derived from the Timoshenko-beam theory in consideration of shear deformation. The electrical admittance is described directly in terms of the physical properties of the surface epoxy resin (SU-8) MBs from an electrically forced vibration analysis. It is found that both the inertia effect and the constraint effect of the MBs produce competitive influence on the resonant frequency and admittance of the compound QCR system. By further comparing the numerical results calculated from the Timoshenko-beam model with those from the Euler-beam model, the shear deformation is found to lead to some deviation of an admittance spectrum. The deviations are revealed to be evident around the admittance peak(s) and reach the maximum when a natural frequency of the MBs is identical to the fundamental frequency of the QCR. Besides, a higher order vibration mode of the MBs corresponds to a larger deviation at the resonance.展开更多
基金supported by the National Natural Science Foundation of China(61473226)
文摘This paper proposes a fast integral terminal sliding mode(ITSM) control method for a cascaded nonlinear dynamical system with mismatched uncertainties. Firstly, an integral terminal sliding mode surface is presented, which not only avoids the singularity in the traditional terminal sliding mode, but also addresses the mismatched problems in the nonlinear control system. Secondly, a new ITSM controller with finite convergence time based on the backstepping technique is derived for a cascaded nonlinear dynamical system with mismatched uncertainties. Thirdly, the convergence time of ITSM is analyzed, whose convergence speed is faster than those of two nonsingular terminal sliding modes.Finally, simulation results are presented in order to evaluate the effectiveness of ITSM control strategies for mismatched uncertainties.
基金Project supported by the National Natural Science Foundation of China(Nos.11272127 and51435006)the Research Fund for the Doctoral Program of Higher Education of China(No.20130142110022)
文摘The electric admittance of a compound system composed of a thickness-shear mode (TSM) quartz crystal resonator (QCR) and an array of surface viscoelastic micro-beams (MBs) is studied. The governing equations of the MBs are derived from the Timoshenko-beam theory in consideration of shear deformation. The electrical admittance is described directly in terms of the physical properties of the surface epoxy resin (SU-8) MBs from an electrically forced vibration analysis. It is found that both the inertia effect and the constraint effect of the MBs produce competitive influence on the resonant frequency and admittance of the compound QCR system. By further comparing the numerical results calculated from the Timoshenko-beam model with those from the Euler-beam model, the shear deformation is found to lead to some deviation of an admittance spectrum. The deviations are revealed to be evident around the admittance peak(s) and reach the maximum when a natural frequency of the MBs is identical to the fundamental frequency of the QCR. Besides, a higher order vibration mode of the MBs corresponds to a larger deviation at the resonance.