The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlineariti...The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.展开更多
Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with exp...Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with explicitly. Based on these results, a new recursive approach is proposed in the necessity proof of strict bounded real lemma for generalized linear system with finite discrete jumps.展开更多
In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achieve...In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achievements, controller design of MJLSs pays more attention to state/output feedback control for stability, while the system cost in practice is out of consideration. In this paper, we propose a control mechanism consisting of two parts: finite-path-dependent state feedback controller design with which uniform stability of MJLSs can be ensured, and mode feedback control which aims to decrease system cost. Differing from the traditional state/output feedback controller design, the main novelty is that the proposed control mechanism not only guarantees system stability, but also decreases system cost effectively by adjusting the occurrence probability of system modes. The effectiveness of the proposed mechanism is illustrated via numerical examples.展开更多
The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentia...The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.展开更多
Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given qua...Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.展开更多
In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention...In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention is focused on designing a memoryless state feedback control law such that the closed-loop system is robust stochastically stable and the closed-loop cost function value is not more than a specified upper bound,for all admissible uncertainties. The key features of the approach include the introduction of a new type of suitable stochastic Lyapunov functional and free weighting matrices techniques. Sufficient conditions for the existence of such controller are obtained in terms of a set of linear matrix inequalities. A numerical example is given to illustrate the less conservatism of the proposed techniques.展开更多
This paper deals with the robust guaranteed cost observer with guaranteed cost performance for a class of linear uncertain jump systems with state delay.The transition of the jumping parameters in systems is governed ...This paper deals with the robust guaranteed cost observer with guaranteed cost performance for a class of linear uncertain jump systems with state delay.The transition of the jumping parameters in systems is governed by a finite-state Markov process.Based on the stability theory in stochastic differential equations,a sufficient condition on the existence of the proposed robust guaranteed cost observer is derived.Robust guaranteed cost observers are designed in terms of a set of linear coupled matrix inequalities.A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost observers.展开更多
This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions ...This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.展开更多
This paper proposes improved stochastic stability conditions for Markovian jump systems with interval time-varying delays. In terms of linear matrix inequalities (LMIs), less conservative delay-range-dependent stabi...This paper proposes improved stochastic stability conditions for Markovian jump systems with interval time-varying delays. In terms of linear matrix inequalities (LMIs), less conservative delay-range-dependent stability conditions for Markovian jump systems are proposed by constructing a different Lyapunov-Krasovskii function. The resulting criteria have advantages over some previous ones in that they involve fewer matrix variables but have less conservatism. Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper.展开更多
This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constan...This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.展开更多
This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays. A delay-dependent condition is established for the considered system to be regular, ...This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays. A delay-dependent condition is established for the considered system to be regular, impulse free and stochastically stable. Based on the condition, a design algorithm of the desired state feedback controller which guarantees the resultant closed-loop system to be regular, impulse free and stochastically stable is proposed in terms of a set of strict linear matrix inequalities (LMIs). Numerical examples show the effectiveness of the proposed methods.展开更多
The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e....The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.展开更多
Based on the definition of passivity extended from deterministic system, the sufficient condition on passivity of stochastic jump system is given against unknown state time delay. By means of memoryless state feedback...Based on the definition of passivity extended from deterministic system, the sufficient condition on passivity of stochastic jump system is given against unknown state time delay. By means of memoryless state feedback, a class of state delayed stochastic jump systems may be led to passive. The feedback controllers are mode-dependent and can be constructed in terms of the solutions of a set of coupled linear matrix inequalities. A numerical example illustrates the results.展开更多
The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. Th...The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. The transition of the jumping parameters in systems is governed by a finite-state Markov process. The objective is to design linear memoryless filters such that for all uncertainties, the resulting augmented system is robust stochastically stable independent of delays and satisfies the proposed guaranteed cost performance. Based on stability theory in stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost filters is derived. Robust guaranteed cost filters are designed in terms of linear matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters.展开更多
This paper deals with the H∞ control problems of Markovian jump systems with mode-dependent time delays. First, considering the mode-dependent time delays, a different delay-dependent H∞ performance condition for Ma...This paper deals with the H∞ control problems of Markovian jump systems with mode-dependent time delays. First, considering the mode-dependent time delays, a different delay-dependent H∞ performance condition for Markovian jump systems is proposed by constructing an improved Lyapunov-Krasovskii function. Based on this new H∞ disturbance attenuation criterion, a full-order dynamic output feedback controller that ensures the exponential mean-square stability and a prescribed H∞ performance level for the resulting closed-loop system is designed. Illustrative numerical examples are provided to demonstrate the effectiveness of the proposed approach.展开更多
This study is concerned with the problem of finite-time H∞ filter design for uncertain discrete-time Markov Jump stochastic systems. Our attention is focused on the design of mode-dependent H∞ filter to ensure the f...This study is concerned with the problem of finite-time H∞ filter design for uncertain discrete-time Markov Jump stochastic systems. Our attention is focused on the design of mode-dependent H∞ filter to ensure the finite-time stability of the filtering error system and preserve a prescribed H∞ performance level for all admissible uncertainties. Sufficient conditions of filtering design for the system under consideration are developed and the corresponding filter parameters can be achieved in terms of linear matrix inequalities (LMI). Finally, a numerical example is provided to illustrate the validity of the proposed method.展开更多
This paper focuses on the methodology analysis for the stability and the corresponding tracking performance of a closed-loop digital jump linear control system with a stochastic switching signal. The method is applied...This paper focuses on the methodology analysis for the stability and the corresponding tracking performance of a closed-loop digital jump linear control system with a stochastic switching signal. The method is applied to a flight control system. A distributed recoverable platform is implemented on the flight control system and subject to independent digital upsets. The upset processes are used to stimulate electromagnetic environments. Specifically, the paper presents the scenarios that the upset process is directly injected into the distributed flight control system, which is modeled by independent Markov upset processes and independent and identically distributed (IID) processes. A theoretical performance analysis and simulation modelling are both presented in detail for a more complete independent digital upset injection. The specific examples are proposed to verify the methodology of tracking performance analysis. The general analyses for different configurations are also proposed. Comparisons among different configurations are conducted to demonstrate the availability and the characteristics of the design.展开更多
基金supported partly by the National Natural Science Foundation of China(60574001)the Program for New Century Excellent Talents in University(050485)the Program for Innovative Research Team of Jiangnan University.
文摘The exponential passive filtering problem for a class of nonlinear Markov jump systems with uncertainties and time-delays is studied. The uncertain parameters are assumed unknown but norm bounded, and the nonlinearities satisfy the quadratic condition. Based on the passive filtering theory, the sufficient condition for the existence of the mode-dependent passive filter is given by analyzing the reconstructed observer system. By using the appropriate Lyapnnov-Krasovskii function and applying linear matrix inequalities, the design scheme of the passive filter is derived and described as an optimization one. The presented exponential passive filter makes the error dynamic systems exponentially stochastically stable for all the admissible uncertainties, time-delays and nonlinearities, has the better abilities of state tracking and satisfies the given passive norm index. Simulation results demonstrate the validity of the proposed approach.
基金This work was supported by the National Natural Science Foundation of China (No. 60274058).
文摘Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with explicitly. Based on these results, a new recursive approach is proposed in the necessity proof of strict bounded real lemma for generalized linear system with finite discrete jumps.
基金Supported by National Natural Science Foundation of China(61174121, 61121003, 61203083) the Research Fund for the Doctoral Program of Higher Education of China Doctoral Foundation of University of Jinan (XBS1242)
基金supported by the National Natural Science Foundation of China(61374073,61503356)Anhui Provincial Natural Science Foundation(1608085QF153)
文摘In this note, the state and mode feedback control problems for a class of discrete-time Markovian jump linear systems(MJLSs) with controllable mode transition probability matrix(MTPM) are investigated. In most achievements, controller design of MJLSs pays more attention to state/output feedback control for stability, while the system cost in practice is out of consideration. In this paper, we propose a control mechanism consisting of two parts: finite-path-dependent state feedback controller design with which uniform stability of MJLSs can be ensured, and mode feedback control which aims to decrease system cost. Differing from the traditional state/output feedback controller design, the main novelty is that the proposed control mechanism not only guarantees system stability, but also decreases system cost effectively by adjusting the occurrence probability of system modes. The effectiveness of the proposed mechanism is illustrated via numerical examples.
文摘The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.
基金supported by the National Natural Science Foundation of China (60974001)Jiangsu "Six Personnel Peak" Talent-Funded Projects
文摘Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.
基金Sponsored by the National Defense Basic Research Foundation of China (Grant No. 9140A17030207HT01)
文摘In this paper,the problem of guaranteed cost control for a class of uncertain discrete-time Markovian jump linear systems with mode-dependent time-delays and a given quadratic cost function are investigated. Attention is focused on designing a memoryless state feedback control law such that the closed-loop system is robust stochastically stable and the closed-loop cost function value is not more than a specified upper bound,for all admissible uncertainties. The key features of the approach include the introduction of a new type of suitable stochastic Lyapunov functional and free weighting matrices techniques. Sufficient conditions for the existence of such controller are obtained in terms of a set of linear matrix inequalities. A numerical example is given to illustrate the less conservatism of the proposed techniques.
基金Sponsored by the Scientific Research Foundation of Harbin Institute of Technology (Grant No.HIT.2003.02)the Chinese Outstanding Youth Science Foundation(Grant No. 69504002)
文摘This paper deals with the robust guaranteed cost observer with guaranteed cost performance for a class of linear uncertain jump systems with state delay.The transition of the jumping parameters in systems is governed by a finite-state Markov process.Based on the stability theory in stochastic differential equations,a sufficient condition on the existence of the proposed robust guaranteed cost observer is derived.Robust guaranteed cost observers are designed in terms of a set of linear coupled matrix inequalities.A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost observers.
基金This work was supported by the National Natural Science Foundation of China(No.60074007).
文摘This paper deals with the problem of H-infinity filter design for uncertain time-delay singular stochastic systems with Markovian jump. Based on the extended It6 stochastic differential formula, sufficient conditions for the solvability of these problems are obtained. Furthermore, It is shown that a desired filter can be constructed by solving a set of linear matrix inequalities. Finally, a simulation example is given to demonstrate the effectiveness of the proposed method.
文摘This paper proposes improved stochastic stability conditions for Markovian jump systems with interval time-varying delays. In terms of linear matrix inequalities (LMIs), less conservative delay-range-dependent stability conditions for Markovian jump systems are proposed by constructing a different Lyapunov-Krasovskii function. The resulting criteria have advantages over some previous ones in that they involve fewer matrix variables but have less conservatism. Numerical examples are provided to demonstrate the efficiency and reduced conservatism of the results in this paper.
基金supported by the National Natural Science Foundation of China (No.60574001)Program for New Century Excellent Talents in University (No.050485)Program for Innovative Research Team of Jiangnan University
文摘This paper deals with the global exponential stability problems for stochastic neutral Markov jump systems (MJSs) with uncertain parameters and multiple time-delays. The delays are respectively considered as constant and time varying cases, and the uncertainties are assumed to be norm bounded. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient condition such that the uncertain neutral MJSs are globally exponentially stochastically stable for all admissible uncertainties. The stability criteria are formulated in the form of linear matrix inequalities (LMIs), which can be easily checked in practice. Finally, two numerical examples are exploited to illustrate the effectiveness of the developed techniques.
基金supported by the National Creative Research Groups Science Foundation of China (No.60721062)the National High Technology Research and Development Program of China (863 Program) (2006AA04 Z182)the National Natural Science Foundation of China (No.60736021)
文摘This paper deals with the delay-dependent stabilization problem for singular systems with Markovian jump parameters and time delays. A delay-dependent condition is established for the considered system to be regular, impulse free and stochastically stable. Based on the condition, a design algorithm of the desired state feedback controller which guarantees the resultant closed-loop system to be regular, impulse free and stochastically stable is proposed in terms of a set of strict linear matrix inequalities (LMIs). Numerical examples show the effectiveness of the proposed methods.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2008AA042902), National Natural Science Foundation of P. R. China (60736021), and National Creative Research Groups Science Foundation of China (60721061)
基金Postdoctoral Science Foundation of China (No. 20060400980)Postdoctoral Science Foundation of Shandong Province(No. 200603015)National Science Foundation of China (No. 10671112)
文摘The robust stability and stabilization, and H-infinity control problems for discrete-time Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a discrete-time Markovian jump standard linear system, and the linear matrix inequality (LMI) conditions for the discrete-time Markovian jump singular systems to be regular, causal, stochastically stable, and stochastically stable with 7- disturbance attenuation are obtained, respectively. With these conditions, the robust state feedback stochastic stabilization problem and H-infinity control problem are solved, and the LMI conditions are obtained. A numerical example illustrates the effectiveness of the method given in the oaoer.
基金supported by National Natural Science Foundation of China(61403254,61374039,61203143)Shanghai Pujiang Program(13PJ1406300)+2 种基金Natural Science Foundation of Shanghai City(13ZR1428500)Innovation Program of Shanghai Municipal Education Commission(14YZ083)Hujiang Foundation of China(C14002,B1402/D1402)
文摘Based on the definition of passivity extended from deterministic system, the sufficient condition on passivity of stochastic jump system is given against unknown state time delay. By means of memoryless state feedback, a class of state delayed stochastic jump systems may be led to passive. The feedback controllers are mode-dependent and can be constructed in terms of the solutions of a set of coupled linear matrix inequalities. A numerical example illustrates the results.
文摘The robust guaranteed cost filtering problem for a dass of linear uncertain stochastic systems with time delays is investigated. The system under study involves time delays, jumping parameters and Brownian motions. The transition of the jumping parameters in systems is governed by a finite-state Markov process. The objective is to design linear memoryless filters such that for all uncertainties, the resulting augmented system is robust stochastically stable independent of delays and satisfies the proposed guaranteed cost performance. Based on stability theory in stochastic differential equations, a sufficient condition on the existence of robust guaranteed cost filters is derived. Robust guaranteed cost filters are designed in terms of linear matrix inequalities. A convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters.
文摘This paper deals with the H∞ control problems of Markovian jump systems with mode-dependent time delays. First, considering the mode-dependent time delays, a different delay-dependent H∞ performance condition for Markovian jump systems is proposed by constructing an improved Lyapunov-Krasovskii function. Based on this new H∞ disturbance attenuation criterion, a full-order dynamic output feedback controller that ensures the exponential mean-square stability and a prescribed H∞ performance level for the resulting closed-loop system is designed. Illustrative numerical examples are provided to demonstrate the effectiveness of the proposed approach.
文摘This study is concerned with the problem of finite-time H∞ filter design for uncertain discrete-time Markov Jump stochastic systems. Our attention is focused on the design of mode-dependent H∞ filter to ensure the finite-time stability of the filtering error system and preserve a prescribed H∞ performance level for all admissible uncertainties. Sufficient conditions of filtering design for the system under consideration are developed and the corresponding filter parameters can be achieved in terms of linear matrix inequalities (LMI). Finally, a numerical example is provided to illustrate the validity of the proposed method.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61403395)the Natural Science Foundation of Tianjin,China(Grant No.13JCYBJC39000)+2 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,Chinathe Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation of China(Grant No.104003020106)the Fund for Scholars of Civil Aviation University of China(Grant No.2012QD21x)
文摘This paper focuses on the methodology analysis for the stability and the corresponding tracking performance of a closed-loop digital jump linear control system with a stochastic switching signal. The method is applied to a flight control system. A distributed recoverable platform is implemented on the flight control system and subject to independent digital upsets. The upset processes are used to stimulate electromagnetic environments. Specifically, the paper presents the scenarios that the upset process is directly injected into the distributed flight control system, which is modeled by independent Markov upset processes and independent and identically distributed (IID) processes. A theoretical performance analysis and simulation modelling are both presented in detail for a more complete independent digital upset injection. The specific examples are proposed to verify the methodology of tracking performance analysis. The general analyses for different configurations are also proposed. Comparisons among different configurations are conducted to demonstrate the availability and the characteristics of the design.