Considering a two-level atom interacting with the competing two-mode field, this paper investigates the entanglement between the two-level atom and the two-mode field by using the quantum reduced entropy, and that bet...Considering a two-level atom interacting with the competing two-mode field, this paper investigates the entanglement between the two-level atom and the two-mode field by using the quantum reduced entropy, and that between the two-mode field by using the quantum relative entropy of entanglement. It shows that the two kinds of entanglement are dependent on the relative coupling strength of atom-field and the atomic distribution, and exhibit the periodical evolution. The maximal atom-field entanglement state can be prepared via the appropriate selection of system parameters and interaction time.展开更多
We have investigated the evolution of the atomic quantum entropy and the entanglement of atom-photon in the system with competing k-photon and l-photon transitions by means of fully quantum theory, and examined the ef...We have investigated the evolution of the atomic quantum entropy and the entanglement of atom-photon in the system with competing k-photon and l-photon transitions by means of fully quantum theory, and examined the effects of competing photon numbers (k and l), the relative coupling strength between the atom and the two-mode field (A/g), and the initial photon number of the field on the atomic quantum entropy and the entanglement of atom-photon. The results show that the multiphoton competing transitions or the large relative coupling strength can lead to the strong entanglement between atoms and photons. The maximal atom-photon entanglement can be prepared via the appropriate selection of system parameters and interaction time.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10374025)
文摘Considering a two-level atom interacting with the competing two-mode field, this paper investigates the entanglement between the two-level atom and the two-mode field by using the quantum reduced entropy, and that between the two-mode field by using the quantum relative entropy of entanglement. It shows that the two kinds of entanglement are dependent on the relative coupling strength of atom-field and the atomic distribution, and exhibit the periodical evolution. The maximal atom-field entanglement state can be prepared via the appropriate selection of system parameters and interaction time.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘We have investigated the evolution of the atomic quantum entropy and the entanglement of atom-photon in the system with competing k-photon and l-photon transitions by means of fully quantum theory, and examined the effects of competing photon numbers (k and l), the relative coupling strength between the atom and the two-mode field (A/g), and the initial photon number of the field on the atomic quantum entropy and the entanglement of atom-photon. The results show that the multiphoton competing transitions or the large relative coupling strength can lead to the strong entanglement between atoms and photons. The maximal atom-photon entanglement can be prepared via the appropriate selection of system parameters and interaction time.