Broadband mode converters are essential devices for space-division and wavelength-division multiplexing systems.There are great challenges in the generation of higher-order modes above the third order with low loss an...Broadband mode converters are essential devices for space-division and wavelength-division multiplexing systems.There are great challenges in the generation of higher-order modes above the third order with low loss and high mode purity employing all-fiber devices.In this paper,an all-fiber LP_(41)mode converter is proposed and fabricated by tapering a nine-core single-mode fiber bundle.Experimental results indicate that this all-fiber LP_(41)mode converter is low-loss,high-purity,and ultrabroadband.The insertion loss is less than 0.4 dB.The purity of odd LP_(41)at 1310 nm is 95.09%,and the operating bandwidth exceeds 280 nm.展开更多
This study presents a high-accuracy,all-fber mode division multiplexing(MDM)reconstructive spectrometer(RS).The MDM was achieved by utilizing a custom-designed 3×1 mode-selective photonics lantern to launch disti...This study presents a high-accuracy,all-fber mode division multiplexing(MDM)reconstructive spectrometer(RS).The MDM was achieved by utilizing a custom-designed 3×1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fber(MMF).This facilitated the information transmission by increasing light scattering processes,thereby encoding the optical spectra more comprehensively into speckle patterns.Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished.Compared to methods employing single-mode excitation and two-mode excitation,the three-mode excitation method reduced the recovered error by 88%and 50%respectively.A resolution enhancement approach based on alternating mode modulation was proposed,reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function.The proof-of-concept study can be further extended to encompass diverse programmable mode excitations.It is not only succinct and highly efcient but also well-suited for a variety of high-accuracy,high-resolution spectral measurement scenarios.展开更多
基金supported by the National Key Research and Development Program of China(No.2018YFB1801802)the National Natural Science Foundation of China(Nos.61835006 and 62375143)。
文摘Broadband mode converters are essential devices for space-division and wavelength-division multiplexing systems.There are great challenges in the generation of higher-order modes above the third order with low loss and high mode purity employing all-fiber devices.In this paper,an all-fiber LP_(41)mode converter is proposed and fabricated by tapering a nine-core single-mode fiber bundle.Experimental results indicate that this all-fiber LP_(41)mode converter is low-loss,high-purity,and ultrabroadband.The insertion loss is less than 0.4 dB.The purity of odd LP_(41)at 1310 nm is 95.09%,and the operating bandwidth exceeds 280 nm.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.62305391)Hunan Innovative Province Construction Project(No.2019RS3017)Scientifc Fund of National University of Defense Technology(No.22-061).
文摘This study presents a high-accuracy,all-fber mode division multiplexing(MDM)reconstructive spectrometer(RS).The MDM was achieved by utilizing a custom-designed 3×1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fber(MMF).This facilitated the information transmission by increasing light scattering processes,thereby encoding the optical spectra more comprehensively into speckle patterns.Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished.Compared to methods employing single-mode excitation and two-mode excitation,the three-mode excitation method reduced the recovered error by 88%and 50%respectively.A resolution enhancement approach based on alternating mode modulation was proposed,reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function.The proof-of-concept study can be further extended to encompass diverse programmable mode excitations.It is not only succinct and highly efcient but also well-suited for a variety of high-accuracy,high-resolution spectral measurement scenarios.