This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While p...This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While performing an intra-oral surgery for a prolonged duration within a limited oral cavity,the tremor of dentist's hand is inevitable.As a result,wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists.Therefore,we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that it can be readily mounted onto the existing dental chair.The manipulator can be used to drill holes for dental inserts and position them with improved accuracy and safety.Further-more,a thorough multi-body motion analysis of the manipulator was carried out by creating a virtual prototype of the manipulator and simulating its controlled movements in various scenarios.The overall design was prepared and validated in simulation using Solid works,MATLAB and Simulink through Model Based Design(MBD)approach.The motion simulation results indicate that the manipulator could be built as a prototype readily.展开更多
Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(...Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.展开更多
Applying calculation method in alloy design should be an important tendency due to its characters of inexpensive cost, high efficiency and prediction. DOS calculations of AuSn, AsSn and SbSn Sn- based alloys have ...Applying calculation method in alloy design should be an important tendency due to its characters of inexpensive cost, high efficiency and prediction. DOS calculations of AuSn, AsSn and SbSn Sn- based alloys have been investigated by employing DV - Xa method, in which different cluster models were adopted to calculate electron structure.It is proved that some regulations must be taken into ac- count in order to carry out alloy design calculation successfully,which are described in this paper in detail.展开更多
Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specifica...Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specification/modeling and the design, and try to find a good match between them. The key task done by designers is to convert a natural language based requirement specification (or corresponding UML based representation) into a predominantly computer language based design model—thus the process is very complex as there is a very large gap between our natural language and computer language. Moreover, this is not just a simple language conversion, but rather a complex knowledge conversion that can lead to meaningful design implementation. In this paper, we describe an automated method to map Requirement Model to Design Model and thus automate/partially automate the Structured Design (SD) process. We believe, this is the first logical step in mapping a more complex requirement specification to design model. We call it IRTDM (Intelligent Agent based requirement model to design model mapping). The main theme of IRTDM is to use some AI (Artificial Intelligence) based algorithms, semantic representation using Ontology or Predicate Logic, design structures using some well known design framework and Machine Learning algorithms for learning over time. Semantics help convert natural language based requirement specification (and associated UML representation) into high level design model followed by mapping to design structures. AI method can also be used to convert high level design structures into lower level design which then can be refined further by some manual and/or semi automated process. We emphasize that automation is one of the key ways to minimize the software cost, and is very important for all, especially, for the “Design for the Bottom 90% People” or BOP (Base of the Pyramid People).展开更多
For several years now, electric vehicles (EVs) have been expected to become widely available in the micro-mobility field. However, the insufficiency of such vehicles’ battery-charging and discharging performance has ...For several years now, electric vehicles (EVs) have been expected to become widely available in the micro-mobility field. However, the insufficiency of such vehicles’ battery-charging and discharging performance has limited their practical use. A hybrid energy storage system, which comprises a capacitor and battery, is a promising solution to this problem;however, to apply model-based designs, which are indispensable to embedded systems, such as the electronic control units used in EVs, a simple and accurate capacitor model is required. Within this framework, a lithium-ion capacitor (LIC) model is proposed, and its charging and discharging performances are evaluated against an actual LIC. The model corresponds accurately to the actual LIC, and the results indicate that the proposed LIC model will work well when used with Model-Based Design (MBD).展开更多
Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal re...Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal representation,design process model and design algorithm.The implementing scheme and formal description of feature taxonomy,feature operator,feature model validation and feature transformation are given in the paper.The feature based design process model suited for either sequencial or concurrent engineering is proposed and its application to product structural design and process plan design is presented. Some general design algorithms for developing feature based design system are also addressed.The proposed scheme provides a formal methodology elementary for feature based design system development and operation in a structural way.展开更多
This article reports on the design and implementation of feature modelling system for the CAPP of rotational symmetric components. The work deals with design by features, feature parts database design, and parts infor...This article reports on the design and implementation of feature modelling system for the CAPP of rotational symmetric components. The work deals with design by features, feature parts database design, and parts information modelling techniques realized in Personal Computer. The modular software provides utilities such as interactive component synthesis, dimensioning, tolerancing and graphical display.展开更多
为有效积累和重用航空橡塑密封结构案例中蕴含的知识,提出基于模型的定义(Model Based Definition,MBD)的航空橡塑密封结构案例库构建方法。首先,基于航空橡塑密封结构行业设计标准和MBD的三维建模与标注方法,建立基于MBD的航空橡塑密...为有效积累和重用航空橡塑密封结构案例中蕴含的知识,提出基于模型的定义(Model Based Definition,MBD)的航空橡塑密封结构案例库构建方法。首先,基于航空橡塑密封结构行业设计标准和MBD的三维建模与标注方法,建立基于MBD的航空橡塑密封结构案例内容框架和表示,通过SolidWorks MBD模块实现航空橡塑密封结构案例的MBD表示;然后,提取航空橡塑密封结构MBD案例表示中的几何特征和语义特征,设计“几何+语义”的案例检索算法;最后,开发的基于MBD的航空橡塑密封结构案例库原型系统及其应用表明,基于MBD的航空橡塑密封结构案例表示与检索实现了知识的积累和重用。展开更多
This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the charact...This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the characteristics of its each module are introduced in detail. ZD--MCADII’s product data is managed by an object--oriented database management system OSCAR, and the product model is built according to the standard STEP. The product design is established on a unified product model, and all the product data are globally associated in ZD--MCADII. ZD--MCADII provides various design features to facilitate the product design, and supports the integrity of CAD, CAPP and CAM.展开更多
In order to realize the agility of the fixture design, such as reconfigurability, rescalability and reusability, fixture structure is function unit based decomposed from a fire new point of view. Which makes it easy f...In order to realize the agility of the fixture design, such as reconfigurability, rescalability and reusability, fixture structure is function unit based decomposed from a fire new point of view. Which makes it easy for agile fixture to be reconfigured and modified. Thereby, the base of case based agile fixture design system info is established.Whole case based agile fixture design model is presented. In which, three modules are added relative to the other models, including case matching of fixture planning module, conflict arbitration module and agile fixture case modify module. The three modules could solve the previous problem that the experience and result are difficult to be reused in the process of design.Two key techniques in the process of the agile fixture design, the evaluation of case similarity, and restriction based conflict arbitration, are listed. And some methods are presented to evaluate the similarity and clear up the conflict.展开更多
This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the developmen...This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes design- based and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data.We review studies on large-area forest surveys based on model-assisted, model- based, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters.展开更多
GS CAD98, a feature based parametric product modeling system that facilitates dexterous manipulation of mechanical design is presented. The system allows designer to make substantial changes to a part or assembly at...GS CAD98, a feature based parametric product modeling system that facilitates dexterous manipulation of mechanical design is presented. The system allows designer to make substantial changes to a part or assembly at any time during the design process. User can develop his/her own special CAD system with the help of GS CADS98s macro language PPL or kernel routines. Furthermore, it is flexible enough to exchange product data with other CAD/CAE/CAM systems according to neutral file. GS CAD98s product data is managed by an object oriented database management system called OSCAR, and the product model is built according to the standard STEP. As a result of the unified product model, all product data are globally associated in GS CAD98. GS CAD98 supports the integration with CAPP, CAM and PDM.展开更多
Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequen...Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequent manufacturing activities such as CAPP and CAM. A new design approach using feature technique and object oriented programming method is put forward in this paper in order to create the product information model of welding structure. With this approach, the product information model is able to effectively support computer aided welding process planning, fixturing, assembling, path planning of welding robot and other manufacturing activities. The feature classification and representing scheme of welding structure are discussed. A prototype system is developed based on feature and object oriented programming. Its structure and functions are given in detail.展开更多
This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty...This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.展开更多
The desire to deliver measured amount of insulin continuously to patients with type I diabetes, for glycemic control, has attracted a lot of attention. Continuous subcutaneous insulin infusion has seen some success in...The desire to deliver measured amount of insulin continuously to patients with type I diabetes, for glycemic control, has attracted a lot of attention. Continuous subcutaneous insulin infusion has seen some success in recent years. However, occlusion of insulin delivery may prevent the patient from receiving the prescribed dosage, with adverse consequence. An in vitro study of insulin delivery is performed, using different insulin pumps, insulin analogs and operating conditions. The aim is to identify incidences of occlusion due to bubble formation in the infusion line. A detailed statistical analysis was performed on the data collected to determine any significant differences and deviations in insulin delivery rates that might be due to factors such as: pump type, the set basal flow rate, insulin type, vibration, and possible insulin occlusion due to air bubble formation within the infusion line. Our findings from the Graeco-Latin Square design model show that there are statistical differences due to the devices, and statistical identifiable clusters are used to distinguish the devices. Such hierarchical models used to describe the analyses, include the flow rate, the pump types, and the activity level.展开更多
The influences of the ratio of the radius of atom A(rA) to radius of atom B(rB), electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydro...The influences of the ratio of the radius of atom A(rA) to radius of atom B(rB), electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydrogen storage alloy. An enthalpy model of Zr-based AB2 alloy was obtained from known data and twelve Zr-based alloys were designed to test the model. The results show that the predicted values are in good agreement with the experimental values. The model can be used for predicting enthalpy values of Zr-based hydrogen storage alloys and settles a foundation for experiments.展开更多
Currently the development of automatic control system is mainly based on manual design. This has made the develop-ment process complicated and has made it difficult to guarantee system requirement. This paper presents...Currently the development of automatic control system is mainly based on manual design. This has made the develop-ment process complicated and has made it difficult to guarantee system requirement. This paper presents a Model in-terpretation development architecture built on meta-models and model interpretation. In this modeling and developing process, different meta-models or domain models may be constructed in terms of various system requirements. Inter-preters are used to transform the meta-model into relevant domain model and generate some other formats from do-main models, typically with different semantic domains. An interpretation extension interface is introduced, which can be accelerated to develop the model interpreter. This development architecture can improve system reusability and en-hance development efficiency. Finally, an example is introduced to explain the advantage of method.展开更多
文摘This paper presents a Model-Based Design(MBD)approach for the design and control of a customized manipulator intended for drilling and position-ing of dental implants accurately with minimal human intervention.While performing an intra-oral surgery for a prolonged duration within a limited oral cavity,the tremor of dentist's hand is inevitable.As a result,wielding the drilling tool and inserting the dental implants safely in accurate position and orientation is highly challenging even for experienced dentists.Therefore,we introduce a customized manipulator that is designed ergonomically by taking in to account the dental chair specifications and anthropomorphic data such that it can be readily mounted onto the existing dental chair.The manipulator can be used to drill holes for dental inserts and position them with improved accuracy and safety.Further-more,a thorough multi-body motion analysis of the manipulator was carried out by creating a virtual prototype of the manipulator and simulating its controlled movements in various scenarios.The overall design was prepared and validated in simulation using Solid works,MATLAB and Simulink through Model Based Design(MBD)approach.The motion simulation results indicate that the manipulator could be built as a prototype readily.
基金Supported by National Natural Science Foundation of China (Grant Nos.51375496,51205409)
文摘Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.
文摘Applying calculation method in alloy design should be an important tendency due to its characters of inexpensive cost, high efficiency and prediction. DOS calculations of AuSn, AsSn and SbSn Sn- based alloys have been investigated by employing DV - Xa method, in which different cluster models were adopted to calculate electron structure.It is proved that some regulations must be taken into ac- count in order to carry out alloy design calculation successfully,which are described in this paper in detail.
文摘Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specification/modeling and the design, and try to find a good match between them. The key task done by designers is to convert a natural language based requirement specification (or corresponding UML based representation) into a predominantly computer language based design model—thus the process is very complex as there is a very large gap between our natural language and computer language. Moreover, this is not just a simple language conversion, but rather a complex knowledge conversion that can lead to meaningful design implementation. In this paper, we describe an automated method to map Requirement Model to Design Model and thus automate/partially automate the Structured Design (SD) process. We believe, this is the first logical step in mapping a more complex requirement specification to design model. We call it IRTDM (Intelligent Agent based requirement model to design model mapping). The main theme of IRTDM is to use some AI (Artificial Intelligence) based algorithms, semantic representation using Ontology or Predicate Logic, design structures using some well known design framework and Machine Learning algorithms for learning over time. Semantics help convert natural language based requirement specification (and associated UML representation) into high level design model followed by mapping to design structures. AI method can also be used to convert high level design structures into lower level design which then can be refined further by some manual and/or semi automated process. We emphasize that automation is one of the key ways to minimize the software cost, and is very important for all, especially, for the “Design for the Bottom 90% People” or BOP (Base of the Pyramid People).
文摘For several years now, electric vehicles (EVs) have been expected to become widely available in the micro-mobility field. However, the insufficiency of such vehicles’ battery-charging and discharging performance has limited their practical use. A hybrid energy storage system, which comprises a capacitor and battery, is a promising solution to this problem;however, to apply model-based designs, which are indispensable to embedded systems, such as the electronic control units used in EVs, a simple and accurate capacitor model is required. Within this framework, a lithium-ion capacitor (LIC) model is proposed, and its charging and discharging performances are evaluated against an actual LIC. The model corresponds accurately to the actual LIC, and the results indicate that the proposed LIC model will work well when used with Model-Based Design (MBD).
文摘Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal representation,design process model and design algorithm.The implementing scheme and formal description of feature taxonomy,feature operator,feature model validation and feature transformation are given in the paper.The feature based design process model suited for either sequencial or concurrent engineering is proposed and its application to product structural design and process plan design is presented. Some general design algorithms for developing feature based design system are also addressed.The proposed scheme provides a formal methodology elementary for feature based design system development and operation in a structural way.
文摘This article reports on the design and implementation of feature modelling system for the CAPP of rotational symmetric components. The work deals with design by features, feature parts database design, and parts information modelling techniques realized in Personal Computer. The modular software provides utilities such as interactive component synthesis, dimensioning, tolerancing and graphical display.
文摘为有效积累和重用航空橡塑密封结构案例中蕴含的知识,提出基于模型的定义(Model Based Definition,MBD)的航空橡塑密封结构案例库构建方法。首先,基于航空橡塑密封结构行业设计标准和MBD的三维建模与标注方法,建立基于MBD的航空橡塑密封结构案例内容框架和表示,通过SolidWorks MBD模块实现航空橡塑密封结构案例的MBD表示;然后,提取航空橡塑密封结构MBD案例表示中的几何特征和语义特征,设计“几何+语义”的案例检索算法;最后,开发的基于MBD的航空橡塑密封结构案例库原型系统及其应用表明,基于MBD的航空橡塑密封结构案例表示与检索实现了知识的积累和重用。
文摘This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the characteristics of its each module are introduced in detail. ZD--MCADII’s product data is managed by an object--oriented database management system OSCAR, and the product model is built according to the standard STEP. The product design is established on a unified product model, and all the product data are globally associated in ZD--MCADII. ZD--MCADII provides various design features to facilitate the product design, and supports the integrity of CAD, CAPP and CAM.
文摘In order to realize the agility of the fixture design, such as reconfigurability, rescalability and reusability, fixture structure is function unit based decomposed from a fire new point of view. Which makes it easy for agile fixture to be reconfigured and modified. Thereby, the base of case based agile fixture design system info is established.Whole case based agile fixture design model is presented. In which, three modules are added relative to the other models, including case matching of fixture planning module, conflict arbitration module and agile fixture case modify module. The three modules could solve the previous problem that the experience and result are difficult to be reused in the process of design.Two key techniques in the process of the agile fixture design, the evaluation of case similarity, and restriction based conflict arbitration, are listed. And some methods are presented to evaluate the similarity and clear up the conflict.
文摘This paper focuses on the use of models for increasing the precision of estimators in large-area forest surveys. It is motivated by the increasing availability of remotely sensed data, which facilitates the development of models predicting the variables of interest in forest surveys. We present, review and compare three different estimation frameworks where models play a core role: model-assisted, model-based, and hybrid estimation. The first two are well known, whereas the third has only recently been introduced in forest surveys. Hybrid inference mixes design- based and model-based inference, since it relies on a probability sample of auxiliary data and a model predicting the target variable from the auxiliary data.We review studies on large-area forest surveys based on model-assisted, model- based, and hybrid estimation, and discuss advantages and disadvantages of the approaches. We conclude that no general recommendations can be made about whether model-assisted, model-based, or hybrid estimation should be preferred. The choice depends on the objective of the survey and the possibilities to acquire appropriate field and remotely sensed data. We also conclude that modelling approaches can only be successfully applied for estimating target variables such as growing stock volume or biomass, which are adequately related to commonly available remotely sensed data, and thus purely field based surveys remain important for several important forest parameters.
文摘GS CAD98, a feature based parametric product modeling system that facilitates dexterous manipulation of mechanical design is presented. The system allows designer to make substantial changes to a part or assembly at any time during the design process. User can develop his/her own special CAD system with the help of GS CADS98s macro language PPL or kernel routines. Furthermore, it is flexible enough to exchange product data with other CAD/CAE/CAM systems according to neutral file. GS CAD98s product data is managed by an object oriented database management system called OSCAR, and the product model is built according to the standard STEP. As a result of the unified product model, all product data are globally associated in GS CAD98. GS CAD98 supports the integration with CAPP, CAM and PDM.
文摘Product information model for welding structure plays an important role for the integration of welding CAD/CAPP/CAM. However, existing CAD modeling systems are not capable of providing enough information for subsequent manufacturing activities such as CAPP and CAM. A new design approach using feature technique and object oriented programming method is put forward in this paper in order to create the product information model of welding structure. With this approach, the product information model is able to effectively support computer aided welding process planning, fixturing, assembling, path planning of welding robot and other manufacturing activities. The feature classification and representing scheme of welding structure are discussed. A prototype system is developed based on feature and object oriented programming. Its structure and functions are given in detail.
文摘This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems.
文摘The desire to deliver measured amount of insulin continuously to patients with type I diabetes, for glycemic control, has attracted a lot of attention. Continuous subcutaneous insulin infusion has seen some success in recent years. However, occlusion of insulin delivery may prevent the patient from receiving the prescribed dosage, with adverse consequence. An in vitro study of insulin delivery is performed, using different insulin pumps, insulin analogs and operating conditions. The aim is to identify incidences of occlusion due to bubble formation in the infusion line. A detailed statistical analysis was performed on the data collected to determine any significant differences and deviations in insulin delivery rates that might be due to factors such as: pump type, the set basal flow rate, insulin type, vibration, and possible insulin occlusion due to air bubble formation within the infusion line. Our findings from the Graeco-Latin Square design model show that there are statistical differences due to the devices, and statistical identifiable clusters are used to distinguish the devices. Such hierarchical models used to describe the analyses, include the flow rate, the pump types, and the activity level.
文摘The influences of the ratio of the radius of atom A(rA) to radius of atom B(rB), electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydrogen storage alloy. An enthalpy model of Zr-based AB2 alloy was obtained from known data and twelve Zr-based alloys were designed to test the model. The results show that the predicted values are in good agreement with the experimental values. The model can be used for predicting enthalpy values of Zr-based hydrogen storage alloys and settles a foundation for experiments.
文摘Currently the development of automatic control system is mainly based on manual design. This has made the develop-ment process complicated and has made it difficult to guarantee system requirement. This paper presents a Model in-terpretation development architecture built on meta-models and model interpretation. In this modeling and developing process, different meta-models or domain models may be constructed in terms of various system requirements. Inter-preters are used to transform the meta-model into relevant domain model and generate some other formats from do-main models, typically with different semantic domains. An interpretation extension interface is introduced, which can be accelerated to develop the model interpreter. This development architecture can improve system reusability and en-hance development efficiency. Finally, an example is introduced to explain the advantage of method.