An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate...An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate the wind fields over three typical urban blocks over the Beijing area with different height-towidth ratios. For comparisons, the wind fields over the same blocks are simulated by an urban sub-domain scale model resolving the buildings explicitly. The wind fields simulated from the two different methods are in good agreement. Then, two-dimensional building morphological characteristics and urban canopy parameters for Beijing are derived from detailed building height data. Finally, experiements are conducted to investigate the effect of buildings on the wind field in Beijing using the improved UBLM.展开更多
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night tim...An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density. It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbu- lence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day. When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature. As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.展开更多
An improved cluster thermal time constant(CTTC) and surface thermal time constant(STTC) numerical model was introduced,which took into account the effect of vegetation coverage and modified the expression of net longw...An improved cluster thermal time constant(CTTC) and surface thermal time constant(STTC) numerical model was introduced,which took into account the effect of vegetation coverage and modified the expression of net longwave radiation of the canyon layer.In the case study the model was used to calculate the air temperature variation at downtown of Tianjin City.The relative error between the calculated and measured air temperatures was less than 3%.The tendency of air temperature variation was predicted when the building aspect ratio,vegetation rate,and wind speed changed respectively.It is demonstrated that when the aspect ratio of a building with south-north orientation increased,the heat island intensity at day time was mitigated;however,it became worse after sunset.The vegetation coverage rate and wind speed both had negative relationship with the urban heat island intensity.展开更多
In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assu...In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var- ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is approximately hundred times faster than that of grid tomography.展开更多
基金funded by National Nat-ural Science Foundation of China(Grants Nos.40505002,40652001,and 40775015)Beijing Natural Science Foun-dation(Grant No.8051002)+1 种基金Beijing New Star Project of Science and Technology(Grant No.2005A03)the Ministry of Science and Technology of China(Grant Nos.2008BAC37B04,2006BAJ02A01,and GYHY200906035)
文摘An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate the wind fields over three typical urban blocks over the Beijing area with different height-towidth ratios. For comparisons, the wind fields over the same blocks are simulated by an urban sub-domain scale model resolving the buildings explicitly. The wind fields simulated from the two different methods are in good agreement. Then, two-dimensional building morphological characteristics and urban canopy parameters for Beijing are derived from detailed building height data. Finally, experiements are conducted to investigate the effect of buildings on the wind field in Beijing using the improved UBLM.
基金Supportly by the National Natural Science Foundation of China under Grant No. 40333027
文摘An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density. It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbu- lence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day. When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature. As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.
文摘An improved cluster thermal time constant(CTTC) and surface thermal time constant(STTC) numerical model was introduced,which took into account the effect of vegetation coverage and modified the expression of net longwave radiation of the canyon layer.In the case study the model was used to calculate the air temperature variation at downtown of Tianjin City.The relative error between the calculated and measured air temperatures was less than 3%.The tendency of air temperature variation was predicted when the building aspect ratio,vegetation rate,and wind speed changed respectively.It is demonstrated that when the aspect ratio of a building with south-north orientation increased,the heat island intensity at day time was mitigated;however,it became worse after sunset.The vegetation coverage rate and wind speed both had negative relationship with the urban heat island intensity.
基金supported by the National Natural Science Foundation of China(Nos.41230318,41074077)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130132110023)the Fundamental Research Funds for the Central Universities of China(No.201413004)
文摘In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var- ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is approximately hundred times faster than that of grid tomography.