The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated b...The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated by using the software.The profiles of gas and air velocity,temperature of the combustion products,concentration of the components,and the shape and length of the flame during combustion have been researched.Compared with the original annular ceramic burner,the new design of the blunt one improves the mixing of the gas and the air significantly,and shortened the length of the flame.展开更多
A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed. The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distributi...A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed. The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distribution of the flows in the chambers and joint were studied by cold model experiments. This type of ceramic burner was successfully applied in 6# blast furnace at Liuzhou Iron & Steel Co. Ltd. (LISC) and this practice proved that it could be used in the hot blast stove and other stoves with a higher efficiency and a higher steadiness of hot blast temperature at 1200℃. With the combustion of blast furnace gas alone, the thermal efficiency was up to 78.95%, saving energy remarkably.展开更多
We present our timesaving joint RANS/LES approach (we originally developed it for numerical simulations of turbulent premixed combustion) to simulate flameless combustion with separate injection of gas fuel and strong...We present our timesaving joint RANS/LES approach (we originally developed it for numerical simulations of turbulent premixed combustion) to simulate flameless combustion with separate injection of gas fuel and strong exhaust gas recirculation. It is based on successive RANS/LES numerical modeling where part of the information (stationary average fields) is achieved by RANS simulations and part (instantaneous nonstationary image of the process) by LES. The latter is performed using the RANS field of mean dissipation rate to model the sub-grid turbulent viscosity in the context of the Kolmogorov theory of small-scale turbulence. We analyze flameless combustion in the FLOX? combustor where we also simulate non-premixed flame combustion used for preliminary heating of the combustor. Different regimes take place using different systems of air injection. We applied for both regimes the simple assumption of “mixed is burnt”. The main results are the following: 1) RANS simulations demonstrate for used two injection systems respectively more compact flame and distributed flameless combustion. 2)There is agreement between RANS and corresponding LES results: RANS and averaged LES profiles of the velocity and temperature are in reasonable agreement. 3) LES modeling with Kolmogorov independent on time sub-grid viscosity reproduce instantaneous image of the process including the vortex structures. Probably due to using an annular injector system for air the instantaneous field of the temperature demonstrate significant irregularity in the beginning of the burner, which in an animation looks like moving coherent structures. 4) In the joint RANS/LES approach the computer time of the LES sub-problems is much shorter than classic LES modeling due to using time independent subgrid transport coefficients and avoiding long-continued simulations, which are necessary for averaging of instantaneous LES fields. Practically in our simulations time consuming of the LES sub-problem was only several times lager then the RANS one and it makes this approach suitable for industrial applications.展开更多
The Response Surface Methodology (RSM) has been applied to explore the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 and...The Response Surface Methodology (RSM) has been applied to explore the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 and Pd/γAl2O3 disc burners were situated in the combustion domain and the experiments were performed under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (ø) of 0.75 and 0.25 respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners were inspected via measuring the mean temperature profiles in the radial direction at different discrete axial locations along the flames. The RSM considers the effect of the two operating parameters explicitly (r), the radial distance from the center line of the flame, and (x), axial distance along the flame over the disc, on the measured temperature of the flames and finds the predicted maximum temperature and the corresponding process variables. Also the RSM has been employed to elucidate such effects in the three and two dimensions and displays the location of the predicted maximum temperature.展开更多
The air flow ratio and the pulverized coal mass flux ratio between the rich and lean sides are the key parameters of horizontal bias burner. In order to realize high combustion efficiency, excellent stability of igni...The air flow ratio and the pulverized coal mass flux ratio between the rich and lean sides are the key parameters of horizontal bias burner. In order to realize high combustion efficiency, excellent stability of ignition, low NO x emission and safe operation, six principal demands are presented on the selection of key parameters. An analytical model is established on the basis of the demands, the fundamentals of combustion and the operation results. An improved horizontal bias burner is also presented and applied. The experiment and numerical simulation results show the improved horizontal bias burner can realize proper key parameters, lower NO x emission, high combustion efficiency and excellent performance of part load operation without oil support. It also can reduce the circumfluence and low velocity zone existing at the downstream sections of vanes, and avoid the burnout of the lean primary air nozzle and the jam in the lean primary air channel. The operation and test results verify the reasonableness and feasibility of the analytical model.展开更多
The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabi...The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabilized confined jet diffusion flames in the presence of different geometries of bluff-body burners. Two stabilizer disc burners tapered at 30° and 60° and another frustum cone of 60°/30° inclination angle were employed all having the same diameter of 80 (mm) acting as flame holders. The measured radial mean temperature profiles of the developed stabilized flames at different normalized axial distances (x/dj) were considered as the model example of the physical process. The RSM and ANN methods analyze the effect of the two operating parameters namely (r), the radial distance from the center line of the flame, and (x/dj) on the measured temperature of the flames, to find the predicted maximum temperature and the corresponding process variables. A three-layered Feed Forward Neural Network in conjugation with the hyperbolic tangent sigmoid (tansig) as transfer function and the optimized topology of 2:10:1 (input neurons: hidden neurons: output neurons) was developed. Also the ANN method has been employed to illustrate such effects in the three and two dimensions and shows the location of the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of R2 and F Ratio are 0.868 - 0.947 and 231.7 - 864.1 for RSM method compared to 0.964 - 0.987 and 2878.8 7580.7 for ANN method beside lower values for error analysis terms.展开更多
基金Item Sponsored by National Natural Science Foundation(50104001)Science and Technology Tackle Key Foundation of Inner Mongolia(980307-4)
文摘The computer simulation of the combustion process in blast furnace(BF) stove has been studied by using the k-ε-g turbulent diffusion flame model.The combustion process in blunt annular ceramic burner was calculated by using the software.The profiles of gas and air velocity,temperature of the combustion products,concentration of the components,and the shape and length of the flame during combustion have been researched.Compared with the original annular ceramic burner,the new design of the blunt one improves the mixing of the gas and the air significantly,and shortened the length of the flame.
文摘A multi-burner-port annular flameless ceramic burner (MAFCB) of the shaftless stove for blast furnaces was designed. The characteristics of pressure drop, homogeneousness of the flows at burner ports, and distribution of the flows in the chambers and joint were studied by cold model experiments. This type of ceramic burner was successfully applied in 6# blast furnace at Liuzhou Iron & Steel Co. Ltd. (LISC) and this practice proved that it could be used in the hot blast stove and other stoves with a higher efficiency and a higher steadiness of hot blast temperature at 1200℃. With the combustion of blast furnace gas alone, the thermal efficiency was up to 78.95%, saving energy remarkably.
文摘We present our timesaving joint RANS/LES approach (we originally developed it for numerical simulations of turbulent premixed combustion) to simulate flameless combustion with separate injection of gas fuel and strong exhaust gas recirculation. It is based on successive RANS/LES numerical modeling where part of the information (stationary average fields) is achieved by RANS simulations and part (instantaneous nonstationary image of the process) by LES. The latter is performed using the RANS field of mean dissipation rate to model the sub-grid turbulent viscosity in the context of the Kolmogorov theory of small-scale turbulence. We analyze flameless combustion in the FLOX? combustor where we also simulate non-premixed flame combustion used for preliminary heating of the combustor. Different regimes take place using different systems of air injection. We applied for both regimes the simple assumption of “mixed is burnt”. The main results are the following: 1) RANS simulations demonstrate for used two injection systems respectively more compact flame and distributed flameless combustion. 2)There is agreement between RANS and corresponding LES results: RANS and averaged LES profiles of the velocity and temperature are in reasonable agreement. 3) LES modeling with Kolmogorov independent on time sub-grid viscosity reproduce instantaneous image of the process including the vortex structures. Probably due to using an annular injector system for air the instantaneous field of the temperature demonstrate significant irregularity in the beginning of the burner, which in an animation looks like moving coherent structures. 4) In the joint RANS/LES approach the computer time of the LES sub-problems is much shorter than classic LES modeling due to using time independent subgrid transport coefficients and avoiding long-continued simulations, which are necessary for averaging of instantaneous LES fields. Practically in our simulations time consuming of the LES sub-problem was only several times lager then the RANS one and it makes this approach suitable for industrial applications.
文摘The Response Surface Methodology (RSM) has been applied to explore the thermal structure of the experimentally studied catalytic combustion of stabilized confined turbulent gaseous diffusion flames. The Pt/γAl2O3 and Pd/γAl2O3 disc burners were situated in the combustion domain and the experiments were performed under both fuel-rich and fuel-lean conditions at a modified equivalence (fuel/air) ratio (ø) of 0.75 and 0.25 respectively. The thermal structure of these catalytic flames developed over the Pt and Pd disc burners were inspected via measuring the mean temperature profiles in the radial direction at different discrete axial locations along the flames. The RSM considers the effect of the two operating parameters explicitly (r), the radial distance from the center line of the flame, and (x), axial distance along the flame over the disc, on the measured temperature of the flames and finds the predicted maximum temperature and the corresponding process variables. Also the RSM has been employed to elucidate such effects in the three and two dimensions and displays the location of the predicted maximum temperature.
文摘The air flow ratio and the pulverized coal mass flux ratio between the rich and lean sides are the key parameters of horizontal bias burner. In order to realize high combustion efficiency, excellent stability of ignition, low NO x emission and safe operation, six principal demands are presented on the selection of key parameters. An analytical model is established on the basis of the demands, the fundamentals of combustion and the operation results. An improved horizontal bias burner is also presented and applied. The experiment and numerical simulation results show the improved horizontal bias burner can realize proper key parameters, lower NO x emission, high combustion efficiency and excellent performance of part load operation without oil support. It also can reduce the circumfluence and low velocity zone existing at the downstream sections of vanes, and avoid the burnout of the lean primary air nozzle and the jam in the lean primary air channel. The operation and test results verify the reasonableness and feasibility of the analytical model.
文摘The present study was conducted to present the comparative modeling, predictive and generalization abilities of response surface methodology (RSM) and artificial neural network (ANN) for the thermal structure of stabilized confined jet diffusion flames in the presence of different geometries of bluff-body burners. Two stabilizer disc burners tapered at 30° and 60° and another frustum cone of 60°/30° inclination angle were employed all having the same diameter of 80 (mm) acting as flame holders. The measured radial mean temperature profiles of the developed stabilized flames at different normalized axial distances (x/dj) were considered as the model example of the physical process. The RSM and ANN methods analyze the effect of the two operating parameters namely (r), the radial distance from the center line of the flame, and (x/dj) on the measured temperature of the flames, to find the predicted maximum temperature and the corresponding process variables. A three-layered Feed Forward Neural Network in conjugation with the hyperbolic tangent sigmoid (tansig) as transfer function and the optimized topology of 2:10:1 (input neurons: hidden neurons: output neurons) was developed. Also the ANN method has been employed to illustrate such effects in the three and two dimensions and shows the location of the predicted maximum temperature. The results indicated the superiority of ANN in the prediction capability as the ranges of R2 and F Ratio are 0.868 - 0.947 and 231.7 - 864.1 for RSM method compared to 0.964 - 0.987 and 2878.8 7580.7 for ANN method beside lower values for error analysis terms.